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1  | INTRODUC TION

Earth's first biogeochemical cycles were driven by anaerobic micro-
organisms (Canfield et al., 2006; Martin et al., 2018). At around 2.3 Ga, 
the Great Oxidation Event (GOE) resulted in the initial oxygenation of 
the atmosphere and surficial biosphere, which ultimately led to the 
modern dominance of aerobic organisms on Earth's surface (Bar-On 
et al., 2018; Luo et al., 2016). Although biological O2 production was 
a prerequisite for the GOE (Haqq-Misra et al., 2011; Holland, 2002), 

oxygenic photosynthesis may have emerged in cyanobacteria hun-
dreds of millions of years prior to the initial accumulation of O2 in 
Earth's atmosphere (Cardona et al., 2019; Lalonde & Konhauser, 2015; 
Ossa Ossa et al., 2018; Planavsky et al., 2014). The delay between the 
emergence of cyanobacterial O2 production and O2 accumulation in 
the atmosphere may have been modulated by geophysical drivers 
(Catling et al., 2001; Holland, 2009; Lee et al., 2016) but may also re-
flect the time required for metabolic innovations to appear in early 
cyanobacteria or for the emergence of ecological linkages with other 
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Abstract
The Great Oxidation Event (GOE) was a rapid accumulation of oxygen in the atmos-
phere as a result of the photosynthetic activity of cyanobacteria. This accumulation 
reflected the pervasiveness of O2 on the planet's surface, indicating that cyanobacte-
ria had become ecologically successful in Archean oceans. Micromolar concentrations 
of Fe2+ in Archean oceans would have reacted with hydrogen peroxide, a byproduct 
of oxygenic photosynthesis, to produce hydroxyl radicals, which cause cellular dam-
age. Yet, cyanobacteria colonized Archean oceans extensively enough to oxygenate 
the atmosphere, which likely required protection mechanisms against the negative 
impacts of hydroxyl radical production in Fe2+-rich seas. We identify several factors 
that could have acted to protect early cyanobacteria from the impacts of hydroxyl 
radical production and hypothesize that microbial cooperation may have played an 
important role in protecting cyanobacteria from Fe2+ toxicity before the GOE. We 
found that several strains of facultative anaerobic heterotrophic bacteria (Shewanella) 
with ROS defence mechanisms increase the fitness of cyanobacteria (Synechococcus) 
in ferruginous waters. Shewanella species with manganese transporters provided the 
most protection. Our results suggest that a tightly regulated response to prevent 
Fe2+ toxicity could have been important for the colonization of ancient ferruginous 
oceans, particularly in the presence of high manganese concentrations and may ex-
pand the upper bound for tolerable Fe2+ concentrations for cyanobacteria.
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microbes facilitating the success of cyanobacteria (Blank & Sanchez-
Baracaldo,  2010; Johnston et  al.,  2009; Lyons et  al.,  2014; Ozaki 
et al., 2019). Understanding how cyanobacteria cooperated with other 
microbes to colonize the Earth's surface is thus essential to understand 
the ecology and tempo of the GOE.

The emergence of oxygenic photosynthesis in cyanobacteria oc-
curred in the Archean (Chisholm, 2017; Kendall et al., 2010; Konhauser 
et  al.,  2011; Lalonde & Konhauser,  2015; Lyons et  al.,  2014; Olson 
et  al.,  2013; Planavsky et  al.,  2014; Reinhard et  al.,  2013). The met-
abolic expansion of cyanobacteria before the GOE may reflect 
their transition from land to Fe2+-rich Archean oceans (Herrmann & 
Gehringer, 2019). This transition would have been physiologically chal-
lenging due to Fe2+ toxicity from its reactions with reactive oxygen 
species (ROS) produced during photosynthesis (Swanner, Mloszewska, 
et al., 2015). Archean oceans likely contained tens to hundreds of mi-
cromolar Fe2+ within the ocean interior (Canfield, 2005; Derry, 2015; 
Drever, 1974; Holland, 1973; Song et al., 2017; Thompson et al., 2019), 
which would have reacted rapidly in the surface ocean with O2 pro-
duced from photosynthesis and any hydrogen peroxide (H2O2) from 
photochemical reactions between O2 and dissolved organic matter, 
as well as enzymes like superoxide dismutase (Hansel & Diaz, 2020; 
Zinser, 2018b). This Fe2+-driven reaction, known as the Fenton reac-
tion, produces hydroxyl radicals (⋅OH; Equation 1):

Hydroxyl radicals cause cellular damage, especially to DNA 
(Imlay, 2003, 2008). Yet, cyanobacteria must have colonized vast areas 
of the ocean in order to oxygenate the atmosphere. Cyanobacteria 
may have been protected by spatial separation of oxygenic and anoxy-
genic phototrophs that could have removed upwelled ferrous iron prior 
to its arrival at the surface (Ozaki et al., 2019), though the potential 
effectiveness of this would depend on the Fe/P ratio of deep waters. 
Antioxidants such as elevated dissolved manganese (Mn2+) and ancient 
Mn-based catalases may have protected ancient cyanobacteria against 
ROS toxicity (Fischer et al., 2016; Lingappa et al., 2019).

Here, we test the hypothesis that heterotrophic microbial ‘help-
ers’ may have protected cyanobacteria from ROS produced by 
Fenton chemistry in Archean oceans, thereby increasing cyanobac-
terial fitness and enabling their ecological success. Such microbial 
cooperation is common among modern cyanobacteria and heterotro-
phic proteobacteria (Christie-Oleza et al., 2017; Morris et al., 2008, 
2011; Zinser,  2018a), whose intimate relationship is evidenced by 
extensive horizontal gene transfer (Ben Said & Or, 2017; Braakman 
et al., 2017; Goldenfeld & Woese, 2011). At the time of the GOE, 
many bacterial lineages, including Proteobacteria, had already diver-
sified (Battistuzzi et al., 2004; Cavalier-Smith, 2006a, 2006b), which 
would have increased the phenotypic pool available for cooperation. 
Including microbial cooperation as an ecological mechanism in mod-
els of early Earth's ecological history might provide a more realistic 
picture of the ancient interactions that ultimately led to the GOE.

We explored whether the presence of ‘helper’ heterotrophic pro-
teobacteria leads to increased fitness of cyanobacteria in ferruginous 

conditions. For a model cyanobacterium, we chose Synechococcus sp. 
PCC 7002 (hereafter Synechococcus), which was previously shown to 
experience Fe2+ toxicity at >100 µM Fe2+ associated with increased 
intracellular ROS production (Swanner, Mloszewska, et al., 2015). As 
potential ‘helper’ bacteria, we chose Shewanella, facultative anaerobic 
gammaproteobacteria that can survive O2 intrusions in the presence of 
high Fe2+ using diverse H2O2-scavenging enzymes (Jiang et al., 2014; 
Mishra & Imlay,  2012; Sekar et  al.,  2016). Experimental conditions 
loosely simulated a pre-GOE illuminated ferruginous surface ocean 
overlain by a CO2- and H2-rich anoxic atmosphere. We found that 
several Shewanella species allowed Synechococcus to grow in ferrugi-
nous conditions that significantly impaired growth of Synechococcus 
monocultures. All ‘helper’ Shewanella strains contained the ability to 
actively uptake dissolved manganese (Mn2+) via the natural resistance-
associated macrophage protein (NRAMP) family MntH Mn2+ trans-
porter, a strategy that has previously been shown to correlate with 
ROS survival (Daly et al., 2004). Our results stress the importance of 
considering microbial cooperation and alternative ROS strategies, such 
as manganese protection, in models of early Earth microbial ecology.

2  | RESULTS

2.1 | Cyanobacteria growth is impaired in 
ferruginous conditions and is restored in the presence 
of some proteobacteria

We found that Synechococcus growth in the presence of elevated 
Fe2+ improved (to a varying degree) in the presence of all Shewanella 
spp. tested. In monoculture, Synechococcus had similar growth 
rate and yield at 25 and 500  μM Fe2+, but a longer lag period at 
500  μM Fe2+ (~2  days) than at 25  μM Fe2+ (~1  day; Figure  1a). At 
1,000 μM Fe2+, Synechococcus growth was significantly impaired in 
monoculture, reaching only 10% the cell density of cultures with 
25 and 500 μM Fe2+ (Figure 1a). Synechococcus growth was mostly 
recovered in the presence of high Fe2+ when grown in co-culture 
with Shewanella baltica OS-155, although the initial lag period was 
extended (Figure  1b). In the presence of Shewanella algae MN-01 
(Figure  1c) and Shewanella loihica PV-4 (Figure  1d), Synechococcus 
growth was partially recovered at high Fe2+. Other than an extended 
lag phase, Shewanella algae BrY (Figure 1e) and Shewanella oneiden-
sis MR-1 (Figure 1f) had minimal influence on Synechococcus growth 
compared to the monoculture (Figure  1a) in all three Fe2+ treat-
ments. Although difficult to quantify due to spectral interference of 
Fe(III) oxide particles, Shewanella cell numbers declined throughout 
the experiment (data not shown).

2.2 | The best proteobacterial helpers are the least 
H2O2-sensitive, and the best H2O2 scavengers

We measured growth and H2O2-scavenging rates of Shewanella spp. 
in the presence of varying H2O2. S.  baltica OS-155 was the least 

(1)Fe2+ + H2O2 → Fe3+ + ⋅OH +OH−



512  |     SZEINBAUM et al.

sensitive to H2O2 (Figure 2a). S. algae MN-01 (Figure 2b), S.  loihica 
PV-4 (Figure 2c) and S. algae BrY (Figure 2d) were moderately sensi-
tive to H2O2. S. oneidensis MR-01 was the most sensitive to H2O2 
(Figure 2d). Along with being most H2O2 tolerant, S. algae MN-01 
and S. baltica OS-155 had the highest rates of H2O2-scavenging ac-
tivity, followed by S. algae BrY (Figure 3). S. loihica PV-4 and S. onei-
densis MR-1 had the lowest H2O2-scavenging rates (Figure 3).

2.3 | Manganese may protect cyanobacteria from 
Fe2+ toxicity

To test whether Mn2+ can protect cyanobacteria from Fe2+ toxic-
ity, we grew Synechococcus PCC 7002 (four replicates per treatment) 
under anoxic conditions with the addition of 1 mM Fe2+ and/or 1 mM 
Mn2+. Cells with 1 mM Mn2+ grew similarly to the controls (Figure 4). 
The A+ medium contained background concentrations of ~140 μM 
Fe2+ and ~220 μM Mn2+. No growth occurred with 1 mM Fe2+. Red 
Fe(III) oxide particles indicated that Fe2+ had been oxidized and pre-
cipitated, as observed by Swanner, Wu, et  al.  (2015). Treatments 
with 1 mM Fe2+ and 1 mM Mn2+ resembled 1 mM Fe2+ treatments 
for approximately the first week. Between 4 and 13 days, two out of 
four of the Fe2+ and Mn2+ treatments grew to maximal OD750. In the 
next 3 months, another of the Fe2+ and Mn2+ treatments also turned 
green, indicating cyanobacterial growth (data not shown). These 

results show that 1 mM Mn2+ is not toxic to cyanobacteria and may 
in fact aid in the survival of cyanobacteria Fe2+ toxicity after an ac-
climation period. The mechanism underlying the apparent protective 
effect of Mn2+ that rescued growth for three out of four cultures in 
high Fe2+ after an extended lag phase remains unknown.

2.4 | The best proteobacterial helpers encode 
additional genes for H2O2 degradation

Synechococcus PCC 7002’s susceptibility to Fe2+ toxicity is consistent 
with the limited number of catalase genes in its genome; it encodes 
cytoplasmic KatG but not periplasmic KatE (Table 1). Without KatE 
to scavenge H2O2 in the periplasm, H2O2 can react with Fe2+ to gen-
erate ·OH intracellularly (Equation 1). Like Synechococcus PCC 7002, 
most marine cyanobacteria are KatE-negative; a BLAST search of 
cyanobacterial genomes in NCBI recovered KatE catalase homologs 
almost exclusively in freshwater and soil cyanobacteria (Table S1).

To identify genes in Shewanella that may have helped alleviate 
Fe2+ toxicity to Synechococcus, we compared the genomes of the 
Shewanella strains in our experiments. Notably, several Shewanella 
spp. contained catalases predicted to have multiple cellular loca-
tions, as previously observed for other microbial catalases (Hanaoka 
et al., 2013). Overall, the genomic inventory of catalase and peroxi-
dase proteins was generally similar between the more protective and 

F I G U R E  1   Growth of Synechococcus 
PCC 7002 in mono- or co-culture with 
Shewanella spp. with varying Fe2+. 
Co-cultures are as follows: (a) none, (b) 
Shewanella baltica OS-155, (c) Shewanella 
algae MN-01, (d) Shewanella loihica PV-4, 
(e) Shewanella algae BrY and (f) Shewanella 
oneidensis MR-1. Error bars represent the 
standard error of the mean (n = 3)
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less protective species (Table 1), suggesting (an)other mechanism(s) 
for ROS survival. We found 52 proteins in the best helpers (OS-155 
and MN-01) that were not present in the other Shewanella strains, 
including genes for flagella, phenazine biosynthesis and transporters 
(Table S2). Flagella may be involved in the ROS-stress response in 
eukaryotes (Hajam et  al., 2017), but their connection to ROS pro-
tection in bacteria, if any, is unknown. Phenazines are known to pro-
duce oxidative stress (Imlay, 2013) and can also mediate extracellular 
redox transfers (Hernandez et  al.,  2004; Wang & Newman,  2008) 
but are unlikely to be responsible for the protective effect because 
Synechococcus PCC 7002 also possesses the phzF gene for phenazine 
synthesis.

The high H2O2 sensitivity of S. oneidensis MR-1, which contains a 
similar repertoire of H2O2-scavenging enzymes as less H2O2-sensitive 
Shewanella spp., is thought to be due to its inability to actively 

F I G U R E  2   Growth of Shewanella spp. with varying H2O2. 
(a) Shewanella baltica OS-155, (b) Shewanella algae MN-01, (c) 
Shewanella loihica PV-4, (d) Shewanella algae BrY and (e) Shewanella 
oneidensis MR-1. Error bars represent the standard error of the 
mean (n = 3 for all except S. baltica OS-155, n = 2). H2O2 was added 
at the four-hour time point

F I G U R E  3   H2O2 peroxide scavenging capacity of Shewanella 
spp. shown as the first-order rate constant plotted versus initial 
H2O2 concentration. No change in H2O2 was observed in the 
abiotic control

F I G U R E  4   Growth of Synechococcus sp. PCC 7002 in 
monoculture with 1 mM Fe2+ and/or 1 mM Mn2+. Controls had 
background levels of ~140 μM Fe2+ and ~220 μM Mn2+. The growth 
curve for the 1 mM Fe2+ + 1 mM Mn2+ treatment is shown for 
the two replicates (out of four) that grew in first three weeks. 
Photographs were taken on day 13
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transport and accumulate intracellular Mn2+ (Daly et al., 2004; Jiang 
et al., 2014). We surmised that differences in ROS scavenging rates 
between Shewanella strains may be due to differences in acquisition 
of Mn2+. We found MntH Mn2+ transporters in the genomes of the 
three top Shewanella helpers: OS-155, MN-01 and PV-4 (Table  1). 
Shewanella BrY and MR-1 lacked characterized Mn2+ transporters. 
Synechococcus PCC 7002 contained genes for the ATP-binding cas-
sette (ABC) family Mn2+ transporters MntABCD and SitABCD trans-
porter instead of MntH.

3  | DISCUSSION

The rise of O2 and ROS from oxygenic photosynthesis would 
have severely stressed strictly anaerobic microbes (Khademian & 
Imlay, 2020), resulting in what was perhaps Earth's first mass extinc-
tion. Experiments demonstrating that catalase-negative cyanobac-
teria (Synechococcus PCC 7002) grew poorly in >100  μM Fe2+ led 
to the idea that Fe+-rich oceans would have slowed cyanobacterial 
colonization of the ocean surface and possibly delayed global oxy-
genation (Swanner, Mloszewska, et  al.,  2015). Our study confirms 
the previous finding that Synechococcus PCC 7002, originally iso-
lated from marine mud, has impaired growth when Fe2+ was 180 µM 
and higher. We show that this Fe2+ toxicity can be alleviated by 
some strains of ‘helper’ Shewanella spp., with the best protection 
afforded by Shewanella strains possessing the most varied sets of 
ROS-defence pathways (e.g. catalases, MntH transporters) and the 
highest rates of H2O2 degradation. Likely, this protection was af-
forded by Shewanella scavenging H2O2 prior to its reaction with Fe2+, 
thereby decreasing the production of damaging hydroxyl radicals.

Thus, our findings align with previous findings (Brown 
et al., 2010; Ward et al., 2019) that cyanobacterial colonization of 
early oceans would not have been hampered by micromolar Fe2+ 

concentrations, if Mn2+-transporting and H2O2-scavenging genes 
were present within the microbial communal gene pool. Early ma-
rine cyanobacteria, like modern terrestrial cyanobacteria, likely had 
myriad protections against Fe2+ and/or may have benefitted from 
the presence of co-existing ‘helper’ bacteria to cope with the harm-
ful byproducts produced by their own metabolism in a ferruginous 
ocean, which would have later been lost due to genome streamlining 
in marine cyanobacteria.

3.1 | Catalase-based protection

The ubiquity of catalase genes in the genomes of all the Shewanella 
strains we studied suggests that catalase accounts for the back-
ground protection provided by all Shewanella spp. tested. The en-
hanced protection provided by Shewanella spp. with similar catalase 
inventories implies that a mechanism other than catalase was likely 
at play, presumably at the level of gene expression. This process may 
also be related to the centralized regulation of H2O2-related genes 
in Shewanella spp. In S. oneidensis MR-1, the transcriptional regula-
tor OxyR is key for suppression of Fenton chemistry by derepres-
sion of KatE and Dps (Jiang et al., 2014; Wan et al., 2018), whereas 
H2O2-based regulation is performed by multiple regulators (includ-
ing PerR) in Synechococcus PCC 7002 and other cyanobacteria (Latifi 
et al., 2009).

A protective effect of proteobacterial catalase has previously 
been observed for the marine cyanobacterium Prochlorococcus, 
which grows in symbiosis with the gammaproteobacterium 
Alteromonas (Biller et al., 2016; Morris et al., 2008, 2011). (For more 
examples of microbe–microbe H2O2 protection, see review by Zinser 
(2018a).) Yet, unlike those long-lived catalase-based symbioses, the 
presence of Shewanella in our co-cultures was ultimately transient; 
Synechococcus gained the fitness advantage of protection from Fe2+ 

TA B L E  1   Locus tags of ROS response proteins in the bacterial species in this study. None contained Mn-catalase or Ni-superoxide 
dismutase

Species Locus prefix
OxyR or 
PerR KatG KatE AhpC

Dps/
MrgA BtuE MntA SitA MntH

Synecho-coccus
PCC 7002

SYN
PCC
7002_A

1836 2422C – 0558 0031 0117 1734 2501 –

Shewanella baltica
OS155

Sbal_ 1181 0875C 0894 0849 3285 1384 – – 0678

Shewanella algae
MN-01

AMR44_ 05180 15815U 20550C 04925 RS11285 RS07720 08935 – – 05235

Shewanella loihica
PV-4

Shew_ 1035 0709U 3190 0792 – 2741 – – 2965

Shewanella oneidensis
MR-1

SO_ 1328 0725U

4405C
1070 0958 1158 1563

3349
– – –

Shewanella algae
BrY

BFS86_ 05230 17460U 16195 00635 RS11070 19140 – – –

Note: ‘—’ indicates no homolog in genome. KatG cellular localization based on PSORTb (Yu et al., 2010): C, cytoplasmic; U, unknown.
Abbreviations: AhpC, alkyl hydroperoxide reductase; BtuE, glutathione peroxidase; Dps/MrgA, DNA-binding ferritin-like protein; KatE, periplasmic 
catalase (clade 3); KatG, catalase-peroxidase (clade 1); MntH, NRAMP-type MntH Mn2+ transporter; OxyR, hydrogen peroxide inducible gene 
activator; SitA and MntA, ABC-type Mn2+ transporters.
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toxicity at the expense of Shewanella, whose population was elim-
inated from the system as Synechococcus grew. Indeed, previous 
attempts to co-culture Shewanella with cyanobacteria with ~15 μM 
Fe2+ resulted in cyanobacterial dominance, with Shewanella's growth 
yield was compromised by the presence of Synechococcus sp. 7002 
even in the presence of organic carbon (Beliaev et al., 2014).

Thus, our co-culture experiments illustrate that cyanobacteria can 
benefit from the presence of ‘helper’ proteobacteria under ferruginous 
conditions. This protection may have been one of the ways that cya-
nobacteria were able to cope with the harmful byproducts produced 
by their own metabolism as they incipiently colonized a ferruginous 
ocean, which would have no longer been necessary once cyanobacte-
ria increased in numbers and seawater Fe2+ concentrations dropped. 
The precise levels of dissolved O2 prevailing on different spatial scales 
in the surface ocean prior to the GOE are not fully known. However, 
there is theoretical evidence to suggest that dissolved O2 would have 
been locally more than sufficient to support aerobic bacterial respira-
tion (Olson et al., 2013; Reinhard et al., 2013).

3.2 | Manganese to the rescue

One of the genes regulated by OxyR is the Mn2+ transporter 
MntH, which is used to accumulate intracellular manganese (Mn2+) 
as a potent ROS detoxification method (Anjem et  al.,  2009; Chen 
et al., 2008; Kehres et al., 2002). Unlike Fe2+, Mn2+ does not undergo 
Fenton-type reactions. Instead, Mn2+ has strong antioxidant proper-
ties (Cheton & Archibald, 1988) and is highly effective at protecting 
against H2O2-induced oxidative stress through multiple mechanisms 
(Aguirre & Culotta,  2012; Hansel,  2017; Horsburgh et  al.,  2002; 
Latour,  2015; Papp-Wallace & Maguire,  2006). Mn2+-carbonate 
and Mn2+-phosphate complexes can chemically disproportionate 
H2O2 (Archibald & Fridovich, 1982; Barnese et al., 2012; Stadtman 
et  al.,  1990). Mn2+-containing catalase, a very ancient member of 
the ferritin superfamily, detoxifies H2O2 (Klotz & Loewen,  2003; 
Zamocky et  al.,  2008). Under H2O2 stress, OxyR facilitates Mn2+ 
replacement of Fe2+ in ROS-sensitive enzymes, preventing their 
inactivation by Fenton chemistry (Anjem et  al.,  2009; Smethurst 
et al., 2020; Sobota & Imlay, 2011).

In monocultures, the rescued growth of Synechococcus PCC 
7002 in three out of four high Fe2+ treatments with 1 mM Mn2+ was 
likely related to the antioxidant properties of Mn2+, although the 
details of the protective mechanism, chemical or enzymatic await 
further study. MntH transporters were found in the most protec-
tive Shewanella strains, but not in Synechococcus PCC 7002 (which 
instead encodes two ABC-type Mn2+ transporters) nor in the less 
protective Shewanella spp. (Table S1). Although further experimen-
tation at more environmentally relevant Mn2+ concentrations is 
needed, our initial findings generally support the hypothesis that 
elevated seawater Mn2+ in early Earth environments (~5–120  µM; 
Holland,  1984; Johnson et  al.,  2016; Komiya et  al.,  2008; Liu 
et al., 2020) played a role in protecting marine cyanobacteria from 
ROS (Fischer et al., 2016; Lingappa et al., 2019).

3.3 | Modern microbial models for ancient 
physiologies

The choice of a model cyanobacterium for physiological experi-
ments applicable to the Precambrian oceans is of great importance 
(Hamilton, 2019; Hamilton et al., 2016). Many terrestrial cyanobac-
teria thrive under the 10–100 µM Fe2+ concentrations predicted for 
Archean oceans (Brown et al., 2005; Ionescu et al., 2014; Thompson 
et al., 2019; Ward et al., 2019; Ward et al., 2017) and either possess 
multiple catalases (Table S1) and/or have novel defence mechanisms 
such as intracellular iron precipitation (Brown et al., 2010). In con-
trast, modern marine cyanobacteria (e.g. Prochlorococcus) tend to 
be genetically streamlined for specific modern oceanographic prov-
inces (Partensky & Garczarek, 2010), which are extremely Fe2+-poor 
compared with modern terrestrial and ancient ecosystems.

The closest modern descendants of the ancestral cyanobacteria 
that evolved into modern marine plankton cyanobacteria are filamen-
tous non-heterocystous Synechococcales (Sánchez-Baracaldo, 2015; 
Sánchez-Baracaldo & Cardona, 2020). KatG was likely present in an-
cestors of marine cyanobacteria (Bernroitner et al., 2009; Zamocky 
et al., 2012), whereas KatE was likely horizontally transferred from 
Proteobacteria and Planctomycetes to some cyanobacterial linages 
(e.g. Nostocales; Zamocky et  al.,  2012). Synechococcus PCC 7002 
lacks Mn2+-catalase, which is widespread in terrestrial cyanobac-
teria (Ballal et  al.,  2020; Banerjee et  al.,  2012; Bihani et  al.,  2016; 
Chakravarty et al., 2016; Chen et al., 2020; Table S1) and was likely 
present in early cyanobacterial lineages (Klotz & Loewen,  2003; 
Zamocky et al., 2012).

Previous genetic studies of Fe2+-induced oxidative stress have 
studied cyanobacteria that cannot cope with high Fe2+ and H2O2, 
for example Synechocystis PCC 6803 (Li et  al.,  2004; Shcolnick 
et al., 2009) in monoculture. In nature, ROS and O2 cycling are com-
munal processes. Thus, models that include shared mechanisms of 
survival are important to consider on the early Earth, particularly as 
gene pools were more limited and were in the process of expansion. 
We advocate for future studies on more deeply branching cyano-
bacterial species with additional ROS defence mechanisms and on 
the molecular evolution of the Mn transporters and catalases dis-
cussed herein. We also encourage more explicit incorporation of mi-
crobial interactions in large-scale models of biogeochemical cycling 
on the ancient Earth.

4  | MATERIAL S AND METHODS

4.1 | Bacterial strains

Synechococcus sp. PCC 7002 was ordered from the Pasteur Culture 
collection of Cyanobacteria. Shewanella oneidensis MR-1 and 
Shewanella algae BrY were kind gifts from the laboratory of Dr. 
Thomas DiChristina (Georgia Institute of Technology). Shewanella 
loihica PV-4 was a kind gift from Dr. Jeffrey Gralnick (University of 
Minnesota).
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4.2 | Experimental setup and growth conditions

Synechococcus sp. PCC 7002 was grown in serum bottles containing 
modified A+ medium (Stevens et al., 1973) with 10 g/L NaCl, TRIS 
buffer (pH 7.2), and 10 mM NH4

+ as the nitrogen source. Shewanella 
spp. were grown overnight in lysogeny broth (LB, 10  g/L NaCl, 
10  g/L tryptone, 5  g/L yeast extract) and transferred into serum 
bottles containing modified A+ medium with amino acids (20 mg/L 
L-serine, 20 mg/L L-arginine and 20 mg/L L-glutamic acid), 20 mM 
lactate as electron donor and 20 mM fumarate as electron accep-
tor. Bottles were flushed with 90% N2/10% CO2 and opened inside 
an anoxic chamber (5% CO2/4% H2/91% N2). Cultures were washed 
with anoxic A+ medium and combined at optical density of 600 nm 
(OD600) = 0.01. Co-cultures were grown in triplicate in 10 ml-well 
tissue culture plates inside the anoxic chamber (5% CO2/4% H2/91% 
N2). Cultures were mixed daily by gently pipetting ~50% of the vol-
ume three times in order to resuspend cells and particulate Fe(III) 
oxides; if not mixed regularly, PCC 7002 would grow at the bottom 
of the well. Light was provided with a fluorescent light in a 12:12 
light:dark timer-controlled cycle. FeCl2 was added at a final concen-
tration of 25, 500, or 1,000 μM.

4.3 | Cyanobacterial quantification by 
flow cytometry

Cell numbers of Synechococcus sp. PCC 7002 were quantified in an 
LSR Fortessa flow cytometer using FACSDiva™ (BD Biosciences). 
At each time point, 200 μl of culture was loaded into a 96-well plate 
inside the anoxic chamber, covered in parafilm to minimize Fe2+ 
oxidation, transported to the cytometer and mixed twice in the cy-
tometer. Samples (10 μl) were injected and run at a rate of 0.5 μL/s. 
Cyanobacteria were detected by phycocyanin/chlorophyll auto-
fluorescence using blue (488 nm) and yellow-green lasers (561 nm) 
measured at 655–684  nm (Hill et  al.,  2017). Optimization and 
calibration of the quantification parameters were achieved using 
yellow-green 1 μm microspheres (441/485 ex/em; Polysciences). 
Live cyanobacteria were also quantified using Syto9 using FITC 
filters. Events above the thresholds of PerCP and FITC were con-
sidered live cyanobacteria. Propidium iodide could not be used to 
identify ‘dead’ cyanobacteria, as the emission spectra overlapped 
with that of their autofluorescence. Due to spectral overlap with 
iron particles, Shewanella cells could not be accurately quantified 
by cytometry.

4.4 | H2O2 resistance assays

Six Shewanella strains were incubated in 96-well plates with mini-
mal M1 media (Myers & Nealson, 1988) with lactate (10 mM) or 
acetate (10 mM) as electron donor under oxic conditions. Growth 
was monitored periodically (every 1–2  hr) by OD600 in a spec-
trophotometer with plate-reading capacity (Tecan). Hydrogen 

peroxide was added after an initial period of growth for 4 hr, at 
a final concentration of 10, 25, 50, 100 or 250  μM, after which 
growth continued to be monitored. (Note: these concentrations 
are 10–10,000× higher than most natural waters, which rarely ex-
ceed 1 μM H2O2 (Cooper et al., 1988)).

4.5 | H2O2-scavenging assays

We compared the abilities of the Shewanella spp. to remove H2O2 
from their environment in cell suspensions. Strains were seeded in 
lysogeny broth (LB, 10 g/L NaCl, 10 g/L tryptone, 5 g/L yeast ex-
tract, Sigma-Aldrich) at 30ºC with shaking overnight, harvested by 
centrifugation at 12,300 g, washed and transferred into minimal 
M1 medium amended with 20 mM lactate at OD600 = 0.02. Cells 
were incubated at 30ºC with shaking until harvesting at mid-log 
phase (OD600  =  0.15–0.35), washed twice with minimal medium 
and inoculated at OD600 = 0.05 into a 24-well plate holding 2 ml 
minimal M1 medium amended with 20  mM lactate and various 
concentrations of H2O2 (0–5000  μM). Samples were collected 
every 3–5  min and analysed immediately for exogenous H2O2 
using the resorufin-horseradish peroxidase colorimetric assay 
(Zhou et al., 1997). Plates were incubated under oxic conditions at 
room temperature with shaking for the duration of the experiment 
(30–200 min). H2O2 disappearance followed an exponential decay 
(Equation 2). First-order apparent rate constants (k) were obtained 
by plotting the data as shown in Equation 3, where k is the slope 
of the graph with ln[H2O2(t  = 0)/H2O2(t = n)] on the y-axis and time 
on the x-axis.

4.6 | Unique proteins

Proteins present in Shewanella algae MN-01 and Shewanella baltica 
OS155 and absent in Shewanella algae BrY, Shewanella oneidensis 
MR-1 and Shewanella loihica PV-4 were identified using the Protein 
Families tool in PATRIC using three protein family databases: PATRIC 
cross-genus families (PGfams), PATRIC genus-specific families 
(PLfams) and FIGfam.

4.7 | Synechococcus monoculture experiments

To determine the influence of 1  mM Mn2+ on Synechococcus PCC 
7002 growth with and without 1 mM Fe2+, Synechococcus was grown 
in modified A+ medium containing 82 mM bicarbonate in Hungate 
tubes with bromobutyl rubber stoppers containing 95% N2/5% H2 
headspace with constant shaking at 200 rpm under constant light. 
Growth was determined by measurement of optical density at 
750 nm (OD750).

(2)H2O2(t=n) = H2O2(t=0)e
− kt

(3)ln
[

H2O2(t=0)∕H2O2(t=n)

]

= kt
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