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Nitrous oxide (N2O) is a potent and long-lived greenhouse gas that accounts

for roughly 6% of global anthropogenic greenhouse gas emissions, and it has

risen from its preindustrial concentration of 270 ppb N2O to 332 ppb N2O

as a result of human activities. The majority of anthropogenic N2O emissions

(52–80%) come from agricultural settings due to high rates of reactive nitrogen

fertilizer application. Amending soils with fine-grained basalt is gaining traction as

a carbon dioxide removal (CDR) pathway, and model simulations suggest that this

processmay also significantly decrease soil N2Oemissions. Here, we continuously

measure N2O fluxes from large-scale maize mesocosms in a greenhouse setting

and use a machine learning framework to assess the relative importance of

the levers on N2O fluxes. We observe significant decreases in cumulative N2O

emissions (between 29–32%) from mesocosm systems with basalt addition. We

find that basalt application rate, soil pH, and surface soil moisture are the strongest

levers on N2O emissions depending on the system settings. These results provide

empirical support for a potentially significant co-benefit of deploying enhanced

rock weathering of silicates (ERW) on managed lands, particularly those subject to

elevated rates of reactive nitrogen input.
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1. Introduction

The increase in greenhouse gas concentrations and air pollutants since preindustrial
times has already begun to have significant climate, ecological, and economic repercussions,
some of which may already be irreversible (IPCC, 2021; FAO, 2022). These impacts will
continue to increase in severity with additional warming (IPCC, 2021), which is probable as
anthropogenic warming is projected to exceed the Paris Accord target of 1.5◦C under almost
all emissions scenarios (Tebaldi et al., 2021). Given the challenge ofmeeting key international
climate goals (Lee et al., 2023), there has been an increased focus on atmospheric CDR
and other negative emissions technologies. However, for many CDR pathways—particularly
those that intersect with the agricultural sector—there is still significant uncertainty about
the impacts of management practice on soil N2O emissions (Guenet et al., 2021).
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N2O is a long-lived greenhouse gas with a perturbation lifetime
of ∼116 years (Prather et al., 2015), and has up to 298 times the
global warming potential of carbon dioxide (CO2) (Myhre et al.,
2013). Its concentration has risen 23% from the pre-industrial
concentration of 270 ppb to the current atmospheric concentration
of 332 ppb, with a rate of increase of 0.85 ppb per year in
recent decades (IPCC, 2021). Agriculture comprises 52–80% of
anthropogenic N2O emissions (Kroeze et al., 1999; Davidson, 2009;
Williams and Crutzen, 2010; Syakila and Kroeze, 2011; Zaehle et al.,
2011; Park et al., 2012; Ciais et al., 2013; Tian et al., 2020), and this is
largely due to incomplete microbial nitrification and denitrification
processes under conditions of intense nitrogen fertilizer application
(Butterbach-Bahl et al., 2013; Snider et al., 2015; IPCC, 2021).
Importantly, these emissions are expected to increase in the coming
century due to the increased demand for food for a growing
population and the reliance of agriculture on nitrogen fertilizers
(Ciais et al., 2013). As a result, it is critical to evaluate any shift
in agricultural practice for its impact on N2O emissions, including
those designed to capture CO2. For example, many forms of
agricultural CDR, such as reduced tillage practices (Mei et al., 2018;
Guenet et al., 2021; Jiang et al., 2022), organic amendments such
as manure or compost (Zhou et al., 2017; Shakoor et al., 2021), or
irrigation to increase soil organic content (McGill et al., 2018), can
significantly increase soil N2O fluxes. In contrast, ERW is a mode
of CDR that has the potential to significantly decrease N2O fluxes
(Blanc-Betes et al., 2020; Val Martin et al., 2023).

Initial work provides strong support for the contention
that ERW with basalt in agricultural lands has the potential
to simultaneously offset a significant component of total
anthropogenic CO2 emissions and increase agricultural yields
(Kantola et al., 2017; Beerling et al., 2018, 2020; Kelland et al.,
2020; Vakilifard et al., 2021; Zhang et al., 2022). The basic idea
behind CDR through ERW in agricultural settings is simple—
soil CO2 readily reacts with a range of cation-rich minerals,
leading to a net removal of carbon from the atmosphere. Initial
estimates of the extent of carbon removal through ERW in
agricultural lands suggest a capture potential of roughly 10%
of total anthropogenic carbon emissions at a cost of $80-$180
per metric ton of CO2 removed (Beerling et al., 2020), lower
than recent estimates of the social cost of carbon ($185) (e.g.,
Rennert et al., 2022). ERW also deacidifies soils, increasing soil
pH by releasing base cations and forming bicarbonate, which is
significant given that agricultural N2O fluxes are inversely related
to soil pH (e.g., Kantola et al., 2017; Zhang et al., 2018; Hénault
et al., 2019).

There are several mechanistic links between soil pH and
N2O emission rates. First, increasing soil pH alters nitrification
and denitrification rates, favoring more complete denitrification
(production of N2, rather than N2O, during dissimilatory nitrate
reduction) (Barton et al., 2013a,b; Samad et al., 2016; Abalos
et al., 2020; Vázquez et al., 2020). Second, elevated soil pH can
potentially lead to more favorable assembly conditions for the
N2O reductase enzyme, nosZ, enhancing N2O consumption within
soils (Stevens et al., 1998; Bergaust et al., 2010; Liu et al., 2010;
Bakken et al., 2012). Lastly, increased plant productivity at higher
pH allows plants to sequester bioavailable nitrogen more efficiently
and therefore reduces the availability nitrogen in soils for N2O
production (Abalos et al., 2020). Model-based assessments at the

site scale (Blanc-Betes et al., 2020) and at regional/global scales (Val
Martin et al., 2023) suggest strong potential for basalt amendments
to reduce N2O emissions from cropland soils. Here, we provide a
new perspective on the links between N2O emissions and ERW by
providing continuous measurements of N2O fluxes in large-scale
maize mesocosms grown in an environmentally controlled setting.

2. Materials and methods

2.1. Overview

We grew maize (zea mays, Reid’s Yellow Dent Open Pollinated
Corn Seed, Bradley Seed Brand) in a Yale Science Building research
greenhouse (affiliated with Yale University’s Marsh Botanical
Garden’s plant growth facility) controlled by an Argus Prime
automation system with and without basalt amendments under
average growing season conditions. We measured greenhouse gas
fluxes, soil pH, topsoil Sikora buffer pH, pore water alkalinity,
temperature, soil moisture, and total nutrient of the soil and corn
plant matter. We performed two iterations of the experiment
(Run 1, Run 2) in the same mesocosms. System settings and
measurements taken for each iteration of the experiment are listed
in Table 1.

2.2. System settings

All maize was grown in 121-liter containers with a 55.88 cm
diameter. We chose to use large containers relative to those used in
other ERW mesocosm experiments [e.g., ∼55-liter (Amann et al.,
2020), and ∼7.8-liter (Buckingham et al., 2022)] given that small
column experiments may lead to differences in soil and system
behavior that can alter ERW rates andmay alter N2Ofluxes. In each
container, we planted 8 corn seeds at close to standard agricultural
densities (8–12 inches apart) and thinned to 4 stalks after 2 weeks
if necessary, selecting the smaller stalk to be removed in all cases.
We applied fertilizer at a rate of 242 kg N/ha both to ensure
a visible N2O flux peak (as N2O fluxes increase with increased
fertilizer applications rates Huang et al., 2014; Roy et al., 2014)
and because many farms in major corn producing states apply high
rates of nitrogen fertilizer (Xia et al., 2021). Each container received
fertilizer via injection of urea-ammonium-nitrate fertilizer in a row
5 cm away from the seeds to minimize risk of seed burning.

We also measured or modulated other factors in addition
to soil pH that have been documented to impact N2O fluxes,
including soil moisture, soil texture, crop type, fertilizer timing
and application rate, soil organic carbon content, temperature,
and upper soil modification (tilling practice) (Dobbie and Smith,
2001; Stehfest and Bouwman, 2006; Shcherbak et al., 2014; Jiang
et al., 2022; Vangeli et al., 2022). Soil moisture is typically observed
to have a positive correlation with N2O fluxes, as it decreases
the soil oxygen concentration and stimulates denitrifying activity
(Dobbie and Smith, 2001; Butterbach-Bahl et al., 2013). Soil
organic carbon content also plays a significant and complex role
in soil nitrogen cycling but is typically positively correlated with
N2O fluxes (Stehfest and Bouwman, 2006). Soil texture and clay
content impacts N2O fluxes as more porous soils have increased
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TABLE 1 Experimental settings and measurements.

Run 1 Run 2

Soil Type Paxton
agricultural
soil∗

Paxton agricultural
soil

Amendment Types 5 tons
basalt/acre
(n= 5),
Control (n= 5)

5 tons basalt/acre
(n= 5), Control
(n= 5) (no new
basalt added since
Run 1)

Fertilizer Rate (lbs N/acre) 216 216

Day Temperature (◦C) 28 28

Night Temperature (◦C) 17 17

Light Intensity (µmol/m2s) 325 325

Photoperiod (hrs) 15 15

Daily Light Integral (mol/m2d) 17.5 17.5

Expected Soil Saturation (%, VWC) 60%, 25 60%, 25

Irrigation 5 oz once per
day

5 oz once per day

Drainage Medium egg crate
material
covered by
landscaping
fabric

egg crate material
covered by
landscaping fabric

Other added leaf
compost at a
rate to achieve
15% by volume,
added 1L 0.5N
HCl

contained 15% leaf
compost by volume,
previously treated
with 1L 0.5N HCl

Measurements Taken N2O fluxes; soil
pH, buffer pH
(beginning and
end); alkalinity,
soil moisture
(15 cm, 35 cm,
and 50 cm);
temperature;
total nutrient
analysis of soil
(beginning and
end) and corn

N2O fluxes; soil pH;
buffer pH; soil
moisture (15 cm,
35 cm, and 50 cm);
temperature

∗Sourced from a mixed-use farm in northern Connecticut with Paxton-Woodbridge soil type
(brownish, gently sloping, moderately well drained loamy soils with a firm substratum).

oxygen availability, stifling denitrification and decreasing N2O
fluxes (Mei et al., 2018). Tilling, on average, is likely to increase
soil oxygen availability and decrease soil organic carbon content,
which together should lead to decreased N2O fluxes (Mei et al.,
2018). Fertilizer application rate also directly impacts the amount
of bioavailable nitrogen in the soil that can be emitted as N2O
(Roy et al., 2014; Shcherbak et al., 2014), and timing fertilizer
application during the growing season decreases N2O emissions
as plant uptake reduces the potential of N2O formation from
soil nitrogen pools (McGill et al., 2018; Shakoor et al., 2021).
Temperature has also been found to be positively correlated with
N2O flux, as it stimulates microbial community activity and soil
respiration (Dobbie and Smith, 2001; Lai et al., 2019).

TABLE 2 Summary of analyses on basalt feedstock.

Analysis Value

PSD mean diameter—volume distrubtion, MV (µm) 294.7

PSD mean diameter—number distrubtion, MN (µm) 1.532

PSD mean diameter—area distrubtion, MA (µm) 21.82

PSD standard deviation of distributions 260.0

PSD graphic mean particle size (µm) 266.2

BET surface area (m2g) 8.8905± 0.0400

BET langmuir surface area (m2g) 19.6221± 0.9616

BET t-Plot micropore volume (cm3/g) 0.000454

Ti (%) 0.026

S (%) <1

P (%) 0.059

Li (ppm) 39.3

Be (ppm) 0.4

B (ppm) 12

Na (%) 0.2

Mg (%) 3.57

Al (%) 2.2

K (%) 0.04

Bi (ppm) 0.03

Ca (%) 9.33

Sc (ppm) 18.5

V (ppm) 162

Cr (ppm) 181

Mn (ppm) 1,450

Fe (%) 6.41

Co (ppm) 41.1

Ni (ppm) 60.5

Cu (ppm) 102

Zn (ppm) 64.9

Ga (ppm) 10.4

Ge (ppm) <0.1

As (ppm) <0.1

Rb (ppm) 1.7

Sr (ppm) 926

Y (ppm) 15.2

Zr (ppm) 0.7

Nb (ppm) <0.1

Mo (ppm) 0.06

Ag (ppm) 0.09

In (ppm) 0.04

Sn (ppm) 0.44

(Continued)
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TABLE 2 (Continued)

Analysis Value

Sb (ppm) 0.03

Te (ppm) <0.02

Cs (ppm) 2.15

Ba (ppm) 311

La (ppm) 8.2

Ce (ppm) 16.8

Cd (ppm) 0.18

Pr (ppm) 2

Nd (ppm) 9.52

Sm (ppm) 2.3

Se (ppm) 0.8

Eu (ppm) 0.7

Gd (ppm) 2.5

Tb (ppm) 0.4

Dy (ppm) 2.9

Ho (ppm) 0.5

Er (ppm) 1.7

Tm (ppm) 0.2

Yb (ppm) 1.6

Lu (ppm) 0.2

Hf (ppm) < 0.1

Ta (ppm) < 0.05

W (ppm) < 0.1

Re (ppm) 0.001

Au (ppb) 2.7

Tl (ppm) 0.02

Pb (ppm) 2.6

Th (ppm) 1.4

U (ppm) 6

Hg (ppb) 10

We kept variables affecting N2O fluxes as constant as possible
with the Argus Prime automation system between containers
within each iteration of the experiment except for soil pH,
which was adjusted via the basalt amendments. The system was
programed to mimic average July conditions in Spring Grove,
Illinois, USA. We chose to aim for 60% saturated soil moisture—
in our mesocosms corresponding to a volumetric water content
(VWC) of 25—in order to ensure a significant N2O flux (Sehy
et al., 2003; Skiba and Ball, 2006; Roy et al., 2014). We maintained
consistent soil moisture via automated irrigation lines dispensing
reverse osmosis water through a Netafim NetBow 10-in drip ring
via the Argus Prime system, and a porous drainage medium placed
at the bottom of each container. We ended the experiment once the

N2O fluxes returned to baseline values, typically 24 to 29 days after
fertilizer addition.

Basalt feedstock was sourced from waste fines at the East
Haven Trap Rock Quarry and prepared by passage through a
0.79mm sieve. A summary of the following analyses can be
found in Table 2. We performed particle size distribution analysis
on the sieved basalt with a Microtrac Flowsync Particle Size
and Shape Analyzer (Supplementary material 1). We performed
BET analysis for the sieved basalt on an Anton Paar Nova 800
(Supplementary material 2). Major and trace element analysis of
sieved basalt feedstock was performed using the Ultratrace Aqua
Regia complete chemical method at Actlabs (41 Bittern Street,
Ancaster, Ontario, L9G 4V5 Canada) (Supplementary material 3).
Based on petrographic work, the feedstock is a weakly carbonized
metabasalt with traces of secondary quartz veins. Applied feedstock
was homogenized in the upper 10 cm of soil in order to simulate
disc tillage. Control containers received the same “tilling practice”
without any basalt application to surface soil.

2.3. Measurements

Weekly pore water samples were taken using Rhizon samplers
inserted at three different soil depths (15 cm, 35 cm, and 50 cm)
for pore water alkalinity measurements. We calculated alkalinity
using a Thermo Scientific Orion Star T920 redox titrator with
0.0501N HCl as the titrant. We performed reproducibility tests and
found an error of 1.4% between samples of our sample size (4mL).
Weekly soil moisture (in the form of VWC) measurements were
taken at three different soil depths (15 cm, 35 cm, and 50 cm) using
a Spectrum Technologies TDR 150 soil moisture meter with an
accuracy of±3.0% VWC. Surface soil was also collected to measure
soil pH (with a 1:2.5 soil: water ratio) and to measure Sikora buffer
pH. The buffer pH was measured via the Sikora method (Sikora,
2006), with reproducibility tests showing a standard deviation of
±0.024 pH units. The surface soil temperature of each container
was continuously monitored by the Eosense automated soil flux
chambers (eosAS-LT/LO). All total nutrient analyses of the soil
and corn plant matter were performed by Agvise Laboratories,
Inc. (804 Highway 15W, P.O. Box 510, Northwood, ND 58267)
(Supplementary material 4, 5).

N2O fluxes were measured with a Picarro Cavity Ringdown
Spectrometer model G2508 paired with 10 Eosense automated
soil flux chambers (eosAS-LT/LO) and an Eosense recirculating
multiplexer (eosMX) (Anthony and Silver, 2020; Eosense, 2020,
2022). A 10-min measurement period was used, with a linear fit
and a pre- and post-delay of 1.5min, to ensure high-resolution flux
measurements while measuring the maximum number of samples
per container each day. Themass spectrometer was calibrated at the
start of the iterations.

2.4. Experiment iterations and di�erent
settings

We performed two iterations of the experiment (Run 1, Run 2)
with the same conditions as described above. After Run 1, the corn
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FIGURE 1

N2O fluxes (nmol/m2/s) relative to days (from start of Run 1) color coded by (A) pH (B) temperature (K) (C) top soil moisture (VWC) (D) alkalinity

(umol/L). The dashed lines represent control containers, and the solid lines represent basalt amended containers.

plants were terminated at the end of the peak N2O flux period by
cutting the stalk at ground level, to prepare the experiment for Run
2. The second iteration (Run 2) only received new corn seeds and
fertilizer, and it did not receive new soil, tilling, basalt, leaf compost,
or acid. Run 2 can be treated as a second growing season on soil that
had previously been amended during Run 1.

2.5. Data analysis

To calculate total emissions, the flux measurements for each
container were integrated over the length of the run using the
trapz function from scipy.integrate in Python. Difference in means
of cumulative emissions was tested for statistical significance with
the two-tailed t-test function from scipy.stats in Python. Manual
measurements were linearly interpolated to line up with the
continuous fluxmeasurements. The instantaneous flux data, weekly
manual measurement data (excluding alkalinity), and application
rate data were then fed into the machine learning algorithm in R
to predict the instantaneous N2O fluxes from various levers and
to assess the relative importance of those levers in regulating the
N2O fluxes.

Given the high-dimensional nonlinear pattern in our data, we
adopted a machine learning technique to predict N2O fluxes and to

quantitatively evaluate the relative importance of each parameter
in driving variation in N2O flux. Compared with traditional
numerical methods, machine learning has the advantage of being
able to approximate arbitrary nonlinear functions with large sets
of intertwined parameters, in situations where a physio-chemical
based algorithmmight be insufficient. Here, we employ the random
forest (RF) algorithm (Ho, 1995; Breiman, 2001), a decision tree-
based algorithm in which an ensemble prediction is produced
from many sub-models (i.e., decision tree) with each “tree” model
making independent predictions for the variable of interest (in
our case, N2O flux) using assigned input variables (i.e., predictor
variables, such as basalt application rate, temperature, soil pH, etc.).
The construction of the RF model is conducted in R (R Core Team,
2017) using the “ranger” package (Wright and Ziegler, 2017). We
first randomly divide the data into a training dataset (75% of the
entire dataset) and a test dataset (25% of the dataset). The training
dataset is then used to build our RF model and the test dataset is
used to test the performance of our trained RF model on unseen
data. During the training process, we form an ensemble of 600
trees with a minimal node size of 3. To determine the relative
importance of each feature in driving the change of predicted N2O
flux, we adopt the permutation method embedded within the RF
model by first calculating the prediction accuracy using the original
data then calculating the prediction accuracy again using perturbed
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FIGURE 2

Cumulative N2O emissions (umol/m2) relative to days (from start of Run 1) color coded by (A) pH (B) temperature (K) (C) top soil moisture (VWC) (D)

alkalinity (umol/L). The dashed lines represent control containers, and the solid lines represent basalt amended containers.

data (sequentially perturbing a single predictor variable at a time).
The difference between the two accuracy values is the permutation
importance for this specific predictor variable and the average
difference among all trees gives the RF permutation importance of
this variable.

3. Results

3.1. Run 1

The N2O fluxes in Run 1 returned to baseline values 24 days
after beginning this iteration of the experiment (Figure 1). The
N2O fluxes in Run 1 (between 1.5 and 2.25 nmol N2O/m2s) were
similar to common agricultural N2O fluxes during the N2O spike
after nitrogen fertilizer application (Lu et al., 2021). There was an
obvious negative correlation between N2O flux and soil pH—in
basalt-amended mesocosms, soil pH increased while N2O fluxes
were smaller (Figure 1A).

The cumulative N2O emissions were higher in the control
group than the basalt amended containers (Figure 2 and Table 3)
and followed the negative correlation between N2O emissions and
soil pH (Figure 3A). There was also an inverse correlation between
porewater alkalinity and N2O emissions (Figure 3D). In Run 1,

TABLE 3 Cumulative N2O emissions from run 1 and run 2.

Iteration Application Mean
cumulative

N2O
emissions
(umol/m2)

Standard
deviation

(1σ)

Run 1 5 tons basalt/acre 1,388 338

Control 2,069 369

Run 2 5 tons basalt/acre 2,348 1,209

Control 3,322 1,498

there weren’t any obvious correlations between N2O emissions and
soil moisture or temperature (Figures 3B, C). The statistical analysis
revealed that Run 1 did have statistically significant difference of
means between the basalt amended containers and the control
containers, and it showed that Run 1′s results rejected the null
hypothesis (Table 4).

In Run 1, soil pH increased in the basalt amended
containers and remained consistent in the control containers
(Supplementary Figure 1 and Supplementary material 6). Buffer
pH was higher in the basalt amended containers than in the
control containers (Supplementary material 6). The alkalinity at
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FIGURE 3

Bar graph showing the mean cumulative N2O emissions (umol/m2)

over the experiment period (24 days) for Run 1. Error bars represent

standard deviation (1σ).

15 cm was variable in the first 14 days of the experiment but
then began to increase slightly in the control containers and more
rapidly in the basalt amended containers (Supplementary Figure 2
and Supplementary material 6). Temperature in Run 1 was
consistent for each container diurnally but varied spatially
with the largest disparity between the containers being ∼3◦C
(Supplementary Figure 5 and Supplementary material 7). The soil
moisture was consistent through time for each individual container
but varied between containers with the range being ∼17 VWC
(Supplementary Figure 6 and Supplementary material 6).

We found statistically significant differences in mean
value between the control and basalt amended containers in
the following categories: pH, Sikora buffer pH, ammonium-
nitrate, calcium, sulfur, zinc, iron, manganese, copper,
base saturation percent calcium, exchangeable acidity, and
calcium carbonate equivalency (Supplementary material 8). Of
these, relative to the control containers, the basalt amended
containers had higher pH, Sikora buffer pH, calcium, sulfur,
base saturation percent calcium, and calcium carbonate
equivalency. Of the statistically significant differences, relative
to the control containers, the basalt amended containers had
lower ammonium-nitrate, zinc, iron, manganese, copper, and
exchangeable acidity.

We also found a statistically significant difference in mean
between the initial and final measurements on the basalt amended
containers in the following categories: pH, Sikora buffer pH, salts,
nitrate-nitrogen, calcium, sulfur, iron, manganese, copper, chlorine,
cation exchange capacity, base saturation of potassium and
calcium, exchangeable acidity, and calcium carbonate equivalency
(Supplementary material 8). Of these, there were increases in pH,

TABLE 4 T-test– comparison of means from run 1 and run 2.

Iteration Group 1 Group 2 t-value p-value

Run 1 Basalt Control −2.7116 0.0266

Run 2 Basalt Control −1.0124 0.3409

Sikora buffer pH, salts, nitrate-nitrogen, calcium, sulfur, chlorine,
cation exchange capacity, base saturation percent calcium, and
calcium carbonate equivalency. There were statistically significant
decreases in iron, manganese, copper, potassium base saturation,
and exchangeable acidity.

Between the initial and final measurements on the control
containers, we found a statistically significant difference in mean
across the following categories: organic matter, nitrate-nitrogen,
potassium, sulfur, chlorine, and potassium base saturation
(Supplementary material 8). Of these, there were increases in
organic matter, nitrate-nitrogen, sulfur, and chlorine. There were
statistically significant decreases in potassium and potassium
base saturation.

We found no statistically significant difference in any plant
tissue nutrient values between the control and the basalt amended
containers (Supplementary material 8).

3.2. Run 2

The N2O fluxes returned to baseline values 29 days after
beginning this iteration of the experiment (Figure 4). Control
1 (container 2) had an anomalously high N2O flux (between
4 and 14 nmol N2O/m2s) at the beginning of the experiment.
All other containers had expected values for N2O fluxes ranging
from 0.25 to 2.5 nmol N2O/m2s. The N2O emissions for Run
2 did not strongly correlate with soil pH or soil amendment,
but they did correlate with soil moisture (Figure 5C). To better
visualize the data in case control 1′s N2O flux was anomalous,
we show the N2O fluxes and cumulative N2O emissions without
control 1 for Run 2 (Figures 4, 5). Plots including control 1 are
located in the supplemental info (Supplementary Figures 9, 10).
The average cumulative N2O emissions from the basalt amended
containers were lower than those from the control containers
(Figure 6 and Table 3). However, there was no statistically
significant difference between the means of the N2O emissions
from the basalt amended containers and the control containers
(Table 4).

Soil pH and buffer pH both remained relatively constant
through time (as no new basalt was added) and were both higher
in the basalt amended containers than the control containers
(Supplementary Figure 11 and Supplementary material 9).
Soil moisture for each container was relatively stable,
but between containers the largest range was ∼20 VWC
(Supplementary Figure 12 and Supplementary material 9).
The temperature in Run 2 behaved similarly to Run
1 and was consistent for each container diurnally but
varied spatially with the largest disparity between the
containers being ∼3◦C (Supplementary Figure 15 and
Supplementary material 10).
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FIGURE 4

N2O fluxes (nmol/m2/s) relative to days (from start of Run 2) color coded by (A) pH (B) temperature (K) (C) top soil moisture (VWC). The dashed lines

represent control containers, and the solid lines represent basalt amended containers. Note that a crash in the Eosense software caused a 2.5-day

gap in measurement between early on Day 9 to midday on Day 11. This figure excludes control 1.

3.3. Machine learning framework: run 1 and
run 2

The RF framework yielded an R2 of 0.97 on the training data
and an R2 of 0.82 on the test data (Supplementary Figures 16, 17).
The permutation importance technique performed on the data
from Run 1 indicated that Sikora buffer pH (negative correlation)
had the highest relative importance, followed by basalt application
rate (negative correlation), soil pH (negative correlation), time
(positive correlation), middle soil moisture (negative correlation),

top soil moisture (positive correlation), bottom soil moisture
(negative correlation), then temperature (negative correlation)
(Figure 7A and Supplementary Figure 20).

For Run 2, the RF framework yielded an R2 of
0.99 on the training data and an R2 of 0.94 on the
test data (Supplementary Figures 21, 22). In Run 2, the
permutation importance technique performed on the data
indicated that top soil moisture (positive correlation)
had the highest relative importance, followed by middle
soil moisture (positive correlation), Sikora buffer pH
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FIGURE 5

Cumulative N2O emissions (umol/m2) relative to days (from start of Run 2) color coded by (A) pH (B) temperature (K) (C) top soil moisture (VWC). The

dashed lines represent control containers, and the solid lines represent basalt amended containers. Note that a crash in the Eosense software caused

a 2.5-day gap in measurement between early on Day 9 to midday on Day 11. This figure excludes control 1.

(negative correlation), soil pH (negative correlation),
bottom soil moisture (positive correlation), time (negative
correlation), basalt application rate (negative correlation),
then temperature (negative correlation) (Figure 7B and
Supplementary Figure 25).

Despite the basalt application rate being a binary variable
(0 or 5 tons basalt per acre) within our data set, we chose
to include it when training and testing the data with the
machine learning framework to collate basalt-related impacts that
go beyond pH or other weekly measured responses (e.g., soil

structure, nutrient release, etc.). Analyses performed excluding
basalt application rate as a variable are included in the supplemental
info (Supplementary Figures 26–37).

3.4. Machine learning framework: runs 1
and 2 combined

Because Runs 1 and 2 were similar and Run 2 can function as
another growing season on the same soil as Run 1, we analyzed
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the combined data with our machine learning framework. It
yielded an R2 value of 0.98 for the training data and an R2

value of 0.91 for the test data (Supplementary Figures 38, 39). In
the combined analysis, the permutation importance technique

FIGURE 6

Bar graph showing the mean cumulative N2O emissions (umol/m2)

over the experiment period (29 days) for Run 2. Error bars represent

standard deviation (1σ).

performed on the data indicated that Sikora buffer pH (negative
correlation) had the highest relative importance, followed by
middle soil moisture (positive correlation), basalt application rate
(negative correlation), soil pH (negative correlation), top soil

FIGURE 8

Relative importance of levers on N2O fluxes as indicated by the

permutation importance technique performed by the RF framework

for Runs 1 and 2 combined.

FIGURE 7

Relative importance of levers on N2O fluxes as indicated by the permutation importance technique performed by the RF framework for (A) Run 1 and

(B) Run 2.
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moisture (positive correlation), time (positive correlation), bottom
soil moisture (negative correlation), then temperature (negative
correlation) (Figure 8 and Supplementary Figure 42). Analyses
performed excluding basalt application rate as a variable are
included in the supplemental info (Supplementary Figures 43–48).

4. Discussion

4.1. Run 1

Run 1 had a N2O peak period (24 days) consistent with those
seen in agricultural settings (Roy et al., 2014; Maier et al., 2022).
The N2O fluxes (between 1.5 and 2.25 nmol N2O/m2s) were also
similar to typical agricultural values (Lu et al., 2021). The fact that
soil pH, buffer pH, and pore water alkalinity all increased through
time are all signals for significant basalt weathering. As expected,
there was also an obvious negative correlation between soil pH and
N2O flux, likely due to the links between soil pH and microbial
activity and nitrous oxide reductase assembly (Stevens et al., 1998;
Bergaust et al., 2010; Liu et al., 2010; Bakken et al., 2012; Barton
et al., 2013a,b; Samad et al., 2016; Abalos et al., 2020; Vázquez
et al., 2020). Since alkalinity is released as basalt weathers, and if
basalt application increases soil pH and decreases N2O fluxes, then
we would naturally expect an alkalinity increase with decreased
N2O fluxes.

The RF framework was successful in predicting N2O fluxes,
with an R2 of 0.82 on the test data, suggesting that the current
parameters fed into the machine learning framework can largely
capture the variation of observed N2O flux. Because Sikora buffer
pH, basalt application rate, and soil pHwere ranked as the top three
in relative importance for predicting N2O fluxes, this indicates that
basalt application played a key role in mitigating N2O fluxes during
this iteration of the experiment. The middle soil moisture was
ranked as more important for predicting N2O fluxes than the top
soil moisture.While top soil moisture was positively correlated with
N2O fluxes, as expected, middle soil moisture was unexpectedly
negatively correlated with N2O fluxes. Time showed a nonlinear
relationship with N2O fluxes that Spearman’s rank coefficient was
unable to capture, but the analysis indicated that time was positively
correlated with N2O fluxes. The fact that soil pH had a slightly
smaller correlation coefficient than basalt application rate could
indicate that basalt application exerts important influences on N2O
production beyond increasing the pH, for instance changing soil
structure in ways that reduce N2O production.

4.2. Run 2

Run 2 also had a N2O peak period (29 days) that was
consistent with average agricultural N2O peaks after fertilization.
Additionally, all of Run 2′s containers had N2O fluxes (between
0.25 and 14 nmol N2O/m2s) within average expected agricultural
ranges (1–50 nmol N2O/m2s) (Huang et al., 2014; Huddell et al.,
2021; Su et al., 2021; Maier et al., 2022). These fluxes were slightly
higher than N2O fluxes from Run 1, which we attribute to soil
settling between iterations of the experiment given that we did
not homogenize the top 10 cm of soil during this iteration of the

experiment. With a more compact soil structure, there would be
less aeration in the soil and therefore enhanced denitrifier activity,
leading to higher N2O fluxes. This may also explain why the soil
moisture was more consistent within each container relative to
Run 1. The cause of the higher N2O fluxes in control 1 (4–14
nmol N2O/m2s) relative to the other containers (0.25–2.5 nmol
N2O/m2s) is not clear, as it did not have a notably lower soil
pH, higher temperature, or higher soil moisture than any of the
other control (or basalt amended) containers. However, we have
poor constraints on soil structure in the mesocosm, and this can
significantly affect the extent of soil anoxic conditions and in
particular the development and maintenance of anoxic microzones
that could promote N2O production.

For Run 2, the RF framework was successful in predicting
N2O fluxes again, with an R2 of 0.94 on the test data. However,
in this iteration of the experiment, top and middle soil moisture
(which were both positively correlated with N2O flux) were ranked
higher than Sikora buffer pH, soil pH, and basalt application rate.
The ability for moisture to saturate the soil more readily (from
the settling of the soil) likely allowed soil moisture to be the
dominant lever in Run 2. Because soil moisture was a stronger
lever than Sikora buffer pH, soil pH, and basalt application rate,
even though the latter three were still all negatively correlated with
N2O flux, this may explain why Run 2 did not have any statistically
significant difference in mean cumulative N2O emissions between
the basalt amended containers and the control containers despite
the lower cumulative N2O emissions on average in the basalt
amended containers. The lower average emissions suggest that
basalt amendments decrease N2O emissions by increasing soil pH,
and the lack of statistical significance could be due to another more
dominant lever—in this case, soil moisture, as suggested by the
machine learning framework. This implication that soil structure
plays an important role in N2O fluxes agrees with observations
suggesting that tilling practices strongly influence N2O fluxes (Mei
et al., 2018; Kim et al., 2021; Jiang et al., 2022).

4.3. Runs 1 and 2 combined

The combined data from Runs 1 and 2 were also successfully
predicted by the RF framework, with an R2 of 0.91 for the
test data. In this test, the permutation importance technique
showed that while Sikora buffer pH was ranked highest in
relative importance, followed by middle soil moisture, the N2O
flux was similarly sensitive to Sikora buffer pH, middle soil
moisture, basalt application rate, soil pH, and top soil moisture.
This suggests that both soil moisture and basalt application
had strong predictive power for determining N2O fluxes. This
also suggests that ERW is a more dominant lever overall,
and it decreases N2O fluxes by removing acidity from the
soil system.

5. Conclusion

Results from our continuous empirical N2Ofluxmeasurements
in large-scale maize mesocosms add to growing support for the
notion that ERW with basalt is likely an effective strategy for
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mitigating soil N2O emissions in agricultural systems (Kantola
et al., 2017; Beerling et al., 2018, 2020; Kelland et al., 2020;
Vakilifard et al., 2021; Zhang et al., 2022). We observe clear
evidence of decreased soil N2O fluxes with increasing soil pH
during basalt weathering, with additionalmodulation of N2Ofluxes
due to other effects of basalt amendment such as improved soil
structure. Our observations also support the widely held view
that soil moisture is a key player in determining soil N2O fluxes
(e.g., Dobbie and Smith, 2001; Butterbach-Bahl et al., 2013). The
addition of fine-grained basalt into some soil types may increase
water retention and thus N2O fluxes, and therefore assuming
model based N2O flux estimates may be problematic in some soil
types. It is also important to note that the scale of change in
N2O fluxes will vary with different basalt feedstocks, application
rates, and soil types, but our work bolsters the general idea that
ERW can decrease N2O fluxes. Therefore, further mesocosm and
field-scale studies are needed for more accurate greenhouse gas
accounting. Nonetheless, our results support model simulations
indicating that basalt addition can significantly decrease soil N2O
emissions (Blanc-Betes et al., 2020; Val Martin et al., 2023). This
bolsters the case that ERW can lead to a decrease in agricultural
greenhouse gas emissions both by capturing CO2 and by reducing
fluxes of N2O to the atmosphere. This could also help shape
the perception of ERW as a CDR technology and provide new
insights on its value in the carbonmarket as an emissions reduction
technology. These results are inspiring for field-scale research
on the link between ERW and N2O emissions in the future
for a nuanced understanding of this relationship in a realistic
outdoor environment.
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