The impact of primary processes and secondary alteration on the stable isotope composition of ocean island basalts

Richard M. Gaschnig a, *, Christopher T. Reinhard b, Noah J. Planavsky c, Xiangli Wang d, Dan Asael e, Matthew G. Jackson e

a Dept of Environmental, Earth and Atmospheric Sciences, University of Massachusetts Lowell. 1 University Ave, Lowell, MA 01854, United States of America
b School of Earth and Atmospheric Sciences, Georgia Institute of Technology, United States of America
c Dept of Earth and Planetary Sciences, Yale University, United States of America
d Dept of Marine Sciences, University of South Alabama, United States of America
e Dept of Earth Science, University of California, Santa Barbara, United States of America

ARTICLE INFO

Editor: Catherine Chauvel
Keywords:
OIB
Molybdenum isotopes
Uranium isotopes
Mantle

ABSTRACT

Molybdenum and uranium are redox sensitive elements that experience isotope fractionation in the Earth-surface environment. Recent studies have explored the transfer of these fractionated signals in subduction zones to arc magmas, but less is known about the full variation of these isotopic tracers in the mantle, particularly domains of the mantle that may feed hot spots. Here, we present Mo and U isotope data for lava samples from Pitcairn, the Samoan Islands, and St. Helena, representing classic localities for the EM-1 (enriched mantle 1), EM-2 (enriched mantle 2) and HIMU (high μ, where μ is 238U/204Pb) endmembers.

Mo and U isotope compositions are highly variable for each location, and the range of variation largely overlaps between the three localities. However, some of this variation may be attributable to chemical weathering and low-temperature alteration effects, as revealed by 234U/238U disequilibrium, also reported here; many samples, especially from Pitcairn, have a 234U deficit, while a few others have a 234U excess. Samples with the greatest 234U deficit tend to have the highest Ce/Mo for a given locality and samples with the lowest δ98Mo typically show considerable 234U/238U disequilibrium, suggesting that Mo was leached during weathering with preferential loss of heavy isotopes.

Of the samples with 234U and 238U activity in equilibrium from the three localities, most have δ98Mo values lower than the published average for MORB, but they have δ238U values within uncertainty of MORB. In contrast, two Samoan samples have δ68Mo values similar to MORB but have isotopically light δ238U. While the low δ68Mo seen in many samples could be attributable to the incorporation of subducted sediments in the plume sources, such sediment would have needed to be deposited under oxic oceanographic conditions that were not prevalent until the Neoproterozoic; in contrast, radiogenic isotope compositions tend to point towards a much greater age of recycled components in the plume sources. Instead, we consider the most likely cause of the light Mo isotope compositions to be incorporation into the source region of ancient subducted ocean crust that experienced Mo isotope fractionation during devolatilization, which favored loss of the heavy isotopes, as has been proposed in several recent studies. This is in line with models for the origin of the EM-1 and HIMU source, along with a portion of the Samoan source. The two Samoan samples with isotopically light U, but MORB-like δ68Mo, may reflect influence of a distinct pool of mid-Proterozoic recycled ocean crust.

1. Introduction

The operation of plate tectonics on likely multi-billion-year time-scales has led to the widespread pollution of the Earth's mantle with materials that have experienced low-temperature interaction with the Earth's hydrosphere and atmosphere (Allègre et al., 1980). Other processes such as delamination of continental lithosphere may also contribute to mantle chemical heterogeneity (Arndt and Goldstein, 1989; Kay and Mahlburg-Kay, 1991). It is also possible that preserved zones of primitive mantle, chemically unmodified since shortly after...
core segregation, also exist (Willbold and Stracke, 2010). The main sources of information on chemical heterogeneities in the mantle are mafic lavas erupted in the ocean basins, where shallow-level contamination by continental crust is not a concern. Mid-ocean ridge basalts (MORBs) are generally thought to sample the ambient convecting upper mantle, and while chemical heterogeneities between ridges in different ocean basins exist, the magnitude of these variations, particularly for radiogenic isotopes, is less than that seen in ocean island basalts (OIBs) erupted at hot spots (Hart et al., 1992; Hofmann, 1997; White, 1985, 2010). OIBs are usually interpreted to be derived from buoyantly upwelling mantle plumes carrying material from distinct chemical domains in the deeper mantle, and they show substantial compositional diversity with regards to radiogenic isotopes. In particular, covariation between Sr, Nd, and Pb isotopes suggest that most OIBs can be explained by mixing between a series of extreme end member compositions (Zindler and Hart, 1986).

Stracke et al. (2005) used the term “zoo” to describe the multiple acronym-defining mantle end members described by radiogenic isotope variations in mid-ocean ridge basalts (MORBs). Members of the MORB zoo that are of interest in this contribution are enriched mantle I (EM-I), enriched mantle II (EM-II), and high μ (HIMU) (White, 1985; Zindler and Hart, 1986). EM-I is characterized by moderately radiogenic Sr, unradiogenic Nd, low 206Pb/204Pb, and moderately high 208Pb/204Pb at a given 206Pb/204Pb, and these compositions are exemplified by OIB from the Pitcairn hotspot (Eisele et al., 2002; Garapic et al., 2015; Woodhead and McCulloch, 1989; White, 1985). A mix of subducted ocean crust and sediment, delaminated continental lower crust and/or lithosphere, and old mantle wedge material are amongst the proposed possible identities of the EM-I source (Delavault et al., 2016; Eisele et al., 2002; Kimura et al., 2016; Willbold and Stracke, 2010; Garapic et al., 2015). EM-II is characterized by anomalously radiogenic Sr, unradiogenic Nd, and moderate 206Pb/204Pb and is exemplified by OIB from the Samoan hotspot (e.g., Zindler and Hofmann, 1982; Workman et al., 2004; Jackson et al., 2007a). HIMU is characterized by unradiogenic Sr, moderately radiogenic Nd, and anomalously high 206Pb/204Pb, requiring a high time-integrated 238U/204Pb (i.e., high μ).

The key OIB localities exhibiting this composition are St. Helena and several volcanoes in the Cook-Australia Islands (e.g., White, 1985; Chauvel et al., 1992; Woodhead, 1996). Many workers have argued that the HIMU source represents subducted altered ocean crust (Chase, 1981) that may have undergone chemical modification of the U-Th-Pb system during subduction-related dehydration (Chauvel et al., 1992; Stracke et al., 2003), although other ingredients, such as subducted marine carbonate (Castillo, 2015), or carbonatite metasomatized subcontinental lithospheric mantle (Weiss et al., 2016), have also been proposed.

The use of OIB samples to explore the composition and long-term history of different mantle domains is predicated on access to samples that have not been chemically altered by surface processes. The high glass content of many basalts and the location of most key OIB localities in warm, wet climates makes these materials particularly vulnerable to chemical weathering and submarine samples are obviously vulnerable to reaction with seawater. While leaching during subaerial chemical weathering will not alter radiogenic isotope compositions, it may fractionate various metal stable isotope ratios (e.g., Wiederhold et al., 2007; Teng et al., 2015; Liu et al., 2014; Greaney et al., 2021). Fractionation impacts Mo and U isotope compositions of lavas from three classic OIB localities: Samoa, Pitcairn, and St. Helena. As Mo and U are highly soluble under oxidizing weathering conditions and Mo is known to experience isotope fractionation during weathering (e.g., Pearce et al., 2010; Voegelin et al., 2012), alteration of samples is a major concern. 234U/238U disequilibrium provides a means of recognizing otherwise cryptic alteration (e.g., Andersen et al., 2015), and we consider the relationship between this parameter and Mo and 238U/235U isotope compositions. We then consider the significance of lower-than-MORB δ98Mo and δ238U compositions in unaltered samples.

2. Background

2.1. The Mo isotope system

Molybdenum is a redox-sensitive metal capable of forming +4 and +6 species, which are present in natural environments in compounds with markedly different solubilities. Weathering of continent crust under oxidizing conditions transports Mo(VI) to the oceans primarily as a soluble oxyanion species. The main mechanism for removal of Mo(VI) from seawater is via scavenging by Mn-oxide particles in oxic sedimentary environments and reduction to insoluble and particle-reactive Mo(IV) and incorporation into sediments in anoxic environments. The first process is the main driver of Mo isotope fractionation in the Earth surface environment (Kendall et al., 2017).

Mo isotopes are reported in δ98Mo ([89Mo/98Mo = (98Mo/98Mo sample / 98Mo/98Mo standard) - 1] x 1000). Goldberg et al. (2013) recommended reporting Mo isotope data relative to the NIST-3134 standard (i.e., with the standard set to 0‰), and the majority of studies of Mo isotopes in high temperature systems have followed this approach. As mentioned above, the largest source of isotope fractionation of Mo is the scavenging of Mo(VI) by sediments in oxic depositional environments. In these environments, lighter isotopes are strongly enriched in the sediments relative to seawater (Barling and Anbar, 2004; Barling et al., 2001). Non-quantitative reduction of Mo(VI) to Mo(IV) in more oxygen poor environments can also cause isotope fractionation in the same direction (Barling et al., 2001; Azrieli-Tal et al., 2014). Alteration of ocean crust by seawater may impart it with δ98Mo values higher than unaltered crust, although far less data is available (Freymuth et al., 2015; McManus et al., 2002).

The use of Mo isotopes in studies of igneous systems has surged in recent years. Bezard et al. (2016) conducted a survey of MORB lavas; all but three samples show a narrow range of Mo isotope compositions within quoted uncertainties, yielding an average of −0.16 ± 0.09‰ if one excludes the three outliers. Liang et al. (2017) reported MORB δ98Mo values clustered around 0‰, but McCoy-West et al. (2019) were unable to reproduce these and reported MORB values consistent with those of Bezard et al. (2016). Studies of arc lavas have shown great isotopic variability (Casalini et al., 2019; Freymuth et al., 2016; Freymuth et al., 2015; Gaschnig et al., 2017; König et al., 2016; Voegelin et al., 2014; Willbold and Elliott, 2017; Wille et al., 2018; Villalobos-Orchard et al., 2020); many localities have yielded δ98Mo values higher than MORB, including values greater than 0‰. The effects of fractional crystallization on Mo isotope ratios appear to be negligible in dry tholeiitic systems (Yang et al., 2015; Gaschnig et al., 2021), but fractional crystallization of hydrous phases such as biotite and amphibole appears to drive remaining melts to somewhat heavier isotope compositions (Voegelin et al., 2014; Wille et al., 2018; Yang et al., 2017). However, most arc studies have concluded that these effects on isotopic composition are subordinate to the influence of differing slab-derived components (Freymuth et al., 2015; Freymuth et al., 2016; König et al., 2016; Gaschnig et al., 2017; Casalini et al., 2019). In order to explain the heavier-than-MORB isotope compositions in many arcs, several workers have argued that slab-derived fluids preferentially remove heavy isotopes while lighter isotopes are retained in a residual phase such as rutile or sulfide (Casalini et al., 2019; Freymuth et al., 2015; König et al., 2016; Skora et al., 2017; Willbold and Elliott, 2017), although in a few cases, unique subducting lithologies with heavy isotope signatures such as black shales may also be responsible (Freymuth et al., 2015; Gaschnig et al., 2017). An important implication of isotope fractionation by slab-derived fluids is that the residual phases in the slab will carry isotopically light Mo deeper into the mantle where it may later be sampled in OIBs. Evidence supporting this model was provided recently by Chen et al. (2019), who reported light isotope compositions in previously subducted blueschist and eclogite samples.
Exploration of Mo isotope systematics of OIBs has been more limited. King et al. (2016) and Gaschnig et al. (2021) reported data for Hawaii and Yang et al. (2015) reported data Iceland, all of which overlapped with MORB. Liang et al. (2017) reported results from Galapagos, Loihi, and several Atlantic OIB localities, with an overall mean δ²⁶⁰Mo of −0.14 ± 0.06 (2σ), overlapping with the MORB range seen by Bezzard et al. (2016). Values both heavier and lighter than MORB were reported for some OIB localities in an abstract by Willbold et al. (2012) (also cited in Willbold and Elliott, 2017), but the complete dataset has not been published.

2.2. The U isotope system

Like Mo, U is a redox-sensitive metal most commonly found in either an insoluble +6 or a soluble +4 state. The two long-lived isotopes of U (²³⁵U and ²³⁸U) are also fractionated by some of the same processes as Mo. Scavenging of U(VI) from seawater in oxic depositional environments leads to the preferential enrichment of ²³⁵U in sediments and a δ²³⁸U (defined as \((\frac{²³⁸U}{²³⁵U} \text{ sample} / ²³⁸U \text{ standard (CRM-112a)} - 1\) \times 10⁴), where CRM-112a is set to 0‰) lower than seawater (Stirling et al., 2007; Weyer et al., 2008). Unlike Mo, partial reduction of dissolved U(VI) leads to the preferential enrichment of the heavy isotope in sediments deposited in anoxic settings (Stirling et al., 2007; Weyer et al., 2008). An additional source of isotope fractionation is the alteration of basaltic ocean crust by seawater. δ²³⁴U values both greater and lesser than unaltered MORB have been reported (Andersen et al., 2015; Noordmann et al., 2015).

Exploration of U isotope variability in igneous systems has been more limited than for Mo. Hiess et al. (2012) analyzed ²³⁸U/²³⁵U in a wide range of different U-bearing minerals from different bulk lithologies and used the results to redefine the bulk Earth ²³⁸U/²³⁵U value from 137.88 to 137.818 (see also Livermore et al., 2018 and Tissot et al., 2019). Telus et al. (2012) analyzed samples of I, S, and A type granites from 137.88 to 137.818 (see also Livermore et al., 2018 and Tissot et al., 2019). Telus et al. (2012) analyzed samples of I, S, and A type granites.
they attributed to melting of carbonated subducted sediments. Freymuth et al. (2019) reported results from Izu arc lavas that either overlapped with or extended to lighter compositions than those observed in the adjacent Mariana arc by Andersen et al. (2015). Like Andersen et al. (2015), they argued that fluids preferentially removed the light isotope of U from the slab but suggested that this U was being drawn from the deeper unaltered portion of the subducting ocean crust.

U isotope analyses typically include measurement of \(^{234}\text{U}\), which is an intermediate product in the \(^{238}\text{U}\) decay series. It occurs early in the series following the exceedingly short-lived \(^{234}\text{Th}\) (\(t_{1/2} = 24.1\) days) and \(^{234}\text{Pa}\) (\(t_{1/2} = 6.7\) h) and has the longest half-life (\(t_{1/2} = 246\) kiloyears) of all the intermediate daughters. \(^{234}\text{U}/^{238}\text{U}\) disequilibrium is widely observed in the Earth-surface environment, with dissolved U in many rivers and the oceans showing a \(^{234}\text{U}\) excess, which has been attributed to preferential leaching of \(^{234}\text{U}\) from alpha recoil-damaged sites during incongruent chemical weathering of crustal rocks (e.g., Thurber, 1962; Sarin et al., 1990; Chabaux et al., 2003). As a result, rocks that have experienced U-loss weathering may develop a \(^{234}\text{U}\) deficiency, while rocks that experience U uptake may develop a \(^{234}\text{U}\) excess (e.g., Bacon, 1978; MacDougall et al., 1979; Moreira-Nordemann, 1980). If this open system behavior occurs as a transient event more than \(~1\) million years ago, the \(^{234}\text{U}/^{238}\text{U}\) may return to secular equilibrium.

3. Methods

3.1. Samples

Samples reported here are from Samoa, Pitcairn, and St. Helena, and all have been geochemically characterized in previous studies (see Table 1 and supplemental material). Samoan samples are from multiple islands and submarine volcanoes. AVON3-78-1 is a dredge sample from Malumalu with an age less than 8 ka (Sims et al., 2008). Samples beginning with “ALIA” are dredge samples from Savai’i with an age around 5 Ma (Koppers et al., 2011). The other Samoan samples are subaerial. S16 is from Savai’i and approximately 0.3 Ma (McDougall, 2010). OFU-04-03 and T33 are from Ofu and Ta’u, respectively, and are less than 0.3 Ma (McDougall, 2010). Major and trace element and radiogenic isotope data for the Samoan lavas is available for these samples in Workman et al. (2004), Jackson et al. (2007a, 2007b), and Hart and Jackson (2014). The samples from Pitcairn were reported on in Garapič et al. (2015) and range from 0.4 to 1.0 Ma. The samples from St. Helena were reported on by Graham et al. (1992) and range from 7 to 15 Ma. New major element and trace element for the St. Helena samples were obtained by XRF and ICP-MS from the Geoanalytical Laboratory at Virginia Tech following the methods of Johnson et al. (1999) and Knaack et al. (1994) (see supplemental file). A new Pb isotope analysis was obtained for St. Helena lava CE-9 using the P54 MC-ICP-MS housed at the Department of Terrestrial Magnetism, following the methods of Jackson et al. (2014). All samples from all localities are maﬁc except for ALIA-115-21 from Samoa and CE-6 from St. Helena, which are trachyandesite and phonolite, respectively.

3.2. Digestion

Samples were digested for Mo and U isotope analysis at the Georgia Institute of Technology with approximately 0.1 g of powder combined with 4 mL of concentrated trace metal-grade HF plus 0.5 mL of concentrated once distilled HNO\(_3\) at 140 °C in acid-cleaned, screw-top Teflon beakers on a hot plate. Beakers were uncapped and acids were evaporated. Salts were dissolved in 4 mL of concentrated HNO\(_3\) and

![Fig. 1. \(\delta^{98}\text{Mo}\) vs. (a) Mo concentration and (b) Ce/Mo. \(\delta^{98}\text{Mo}\) here and elsewhere is given relative to NIST-3134 (i.e., NIST-3134 = 0‰). While there is generally little correlation between \(\delta^{98}\text{Mo}\) and [Mo], \(\delta^{98}\text{Mo}\) and Ce/Mo are generally well correlated in a negative sense. Samples from the three localities form arrays that radiate away from average MORB (composition from Bezard et al., 2016). Error bars for Mo isotope compositions here and elsewhere are 2 standard error level.](image-url)
evaporated and then repeatedly dissolved in once-distilled 6 M HCl and evaporated until a solution free of precipitates was obtained.

3.3. Mo separation and isotope ratio analysis

Sample solutions were mixed with a 97Mo–100Mo double spike in proportions designed to double Mo concentration in the resulting mixture and then dried down. Mo chromatography was performed at Georgia Institute of Technology using the single stage “procedure 2” of Willbold et al. (2016), which was designed specifically for igneous rocks and typically removes the sample matrix in one pass.

Purified Mo solutions were analyzed for isotope composition at the Yale Metal Geochemistry Center on a Thermo Neptune Plus MC-ICP-MS. Solutions were introduced with an Apex IR desolvating nebulizer and analyzed in static mode. 91Zr and 99Ru were monitored to correct for potential isobaric interference. Groups of three samples were bracketed with analyzes of the spiked NIST 3134 Mo isotope standard and by periodic analyses of the spiked RochMo2 Mo standard. Mo isotope compositions are reported in δ^{98}Mo relative to NIST 3134 (i.e., with NIST 3134 set to 0‰) (Goldberg et al., 2013). While Nagler et al. (2014) recommended defining the δ^{98}Mo of NIST 3134 as $+0.25$‰, in order to allow for easy comparison to published seawater and sediment data that

Fig. 2. δ^{238}U vs (a) U concentration and (b) δ^{234}U. There are not apparent correlations between δ^{238}U and either parameter. Importantly, many samples are not at secular equilibrium with regards to δ^{234}U, defined as within ±7‰ of 0‰ (shown by the gray shaded band here and in subsequent figures). Error bars for U isotope compositions here and elsewhere are 2 standard error level.
were normalized to different standards, the majority of studies of Mo isotopes in igneous rocks have reported results relative to NIST 3134 with that standard set to 0‰.

External reproducibility on NIST 3134 was ±0.04‰. Most of the samples reported in this study were analyzed in the same batches as those in Gaschnig et al. (2017). This includes aliquots of the USGS reference materials BHVO-2 and W-2. δMo values of −0.08 ± 0.03‰ (2σ, n = 4) for BHVO-2 and −0.04 ± 0.08‰ (2SE, n = 1) for W-2 were reported in that earlier study, which are consistent with published values (Burkhardt et al., 2014; Hin et al., 2013; Li et al., 2014; König et al., 2016; Bezard et al., 2016; Zhao et al., 2016). We note that while BHVO-2 is a Hawaiian basalt and therefore an OIB, the effects of metal contamination during the preparation of this and other USGS basalt standards (Weis et al., 2005, 2006; Willbold et al., 2016) make them unreliable as sources of additional data on Mo isotope heterogeneity in the mantle. Final analyses for this study included USGS reference materials SDO-1 and NOD-A. δMo values obtained for these 0.76 ± 0.10‰ (2σ, n = 2) and −0.69 ± 0.08‰ (2SE, n = 1), both of which are consistent with published values (Goldberg et al., 2013; Li, and Zhu, X.-k., Tang, S.-h., Zhang, K., 2016; Zhao et al., 2016). Quoted uncertainties in Table 1 and error bars in the figures are internal two standard errors, which generally are comparable to the reproducibility of CRM 112a.

3.4. U separation and isotope ratio analysis

Sample solutions were mixed with a 233U–236U double spike in amounts appropriate to yield a 238U/236U of 30 in the resulting mixtures. Samples were dried down and brought up in 3 M HNO$_3$ for column chromatography. U was purified in one pass with UTEVA resin, following the methods of Wang et al. (2016) (modified from Weyer et al., 2008). Isotope analyses were conducted at the Yale Metal Geochemistry Center on a Thermo Neptune Plus MC-ICP-MS. Samples were normalized to bracketing analyses of spiked CRM 112a solutions. Additional details are provided in Wang et al. (2016). The long-term reproducibility of the δ238U and δ234U compositions of CRM 112a are ±0.07‰ and 4‰, respectively. Four analyses of the USGS BHVO-2 reference material were also analyzed and yielded a δ238U of −0.34 ± 0.05‰ and δ234U of 4 ±/− 4‰, overlapping with published values (Andersen et al., 2015; Tissot and Dauphas, 2015). Quoted uncertainties in Table 1 and error bars in the figures are internal two standard errors, which generally are comparable to the reproducibility of CRM 112a.

4. Results

4.1. Mo isotope results

δMo results for each locality are highly variable and significant.
overlap exists between the ranges of compositions seen amongst the three localities (Fig. 1). Samoa samples have δ⁹⁸Mo values ranging from −0.10‰ to −0.52‰, Pitcairn samples have −0.26‰ to −0.75‰, and St. Helena samples have δ⁹⁸Mo values from −0.12‰ to −0.84‰. Mo concentrations show significant overlap amongst localities and range from 1.0 to 3.2 ppm. While correlations between [Mo] and δ⁹⁸Mo are not particularly strong, the samples from Pitcairn and St. Helena with the highest Mo content also have the highest δ⁹⁸Mo values. All samples have Mo isotope compositions significantly lighter than the continental crust (which typically has positive δ⁹⁸Mo values) (Yang et al., 2017), and most are lighter than the range seen in MORBs (Bezard et al., 2016). The δ⁹⁸Mo variability is significantly reduced after samples exhibiting evidence of low temperature alteration are excluded (see Discussion).

4.2. U isotope results

As with the Mo isotope data, δ²³⁸U results from the individual localities show heterogeneity, and there is significant overlap in the ranges seen between the localities (Fig. 2). Samoa samples have δ²³⁸U values ranging from −0.23‰ to −0.48‰, Pitcairn samples have values ranging from −0.21‰ to −0.40‰, and St. Helena samples have values ranging from −0.21‰ to −0.38‰. δ²³⁸U values from each locality overlap with values reported for both MORB and other OIB localities by Andersen et al. (2015). U concentrations vary from 0.6 to 2.8 ppm for Samoa and

![Fig. 4. δ²³⁴U vs trace element ratios. Chemical weathering would be expected to preferentially remove (a) U and (b) Rb over Th but there is not a strong correlation with δ²³⁴U. On the other hand, Ce/Mo (c) shows a relatively clear inverse relationship with δ²³⁴U for each location, suggesting that Mo was mobilized by the same process that disturbed the ²³⁴U/²³⁸U. Trace element sources given in text.](image-url)
0.6 to 2.3 ppm for Pitcairn. The phonolite sample from St. Helena has high [U] of 6.55 ppm, but the other samples from that locality range from 0.7 to 1.1 ppm.

Importantly, U isotope analysis provides 234U/238U ratios in addition to 187Os/188Os ratios. Samples at secular equilibrium will have 234U/238U activity ratios equal to 1 and δ^{234}U values within uncertainty of 0‰. Values deviating from secular equilibrium suggest the lavas behaved as open systems with regard to U after crystallization and within the last ~1 Ma. The majority of samples studied here have δ^{234}U values indicating secular disequilibrium (Fig. 2b), where secular equilibrium is defined here by δ^{234}U values deviating more than ±7‰ from 0‰. Of these, most show a deficit in 238U. The most extreme value in the whole dataset is −190‰ in a Samoan sample; the other Samoan samples range from −21‰ to +7‰, with three at secular equilibrium. (Of the three in equilibrium, 234U/238U results were previously reported for sample AVON3-78-1 by Sims et al., 2008 and are within uncertainty of our results.) Samples from Pitcairn range from −67‰ to +21‰, and none are at secular equilibrium. Samples from St. Helena range from −75 to +18‰, with two at secular equilibrium. We note that U isotope data is unavailable for one Pitcairn and one St. Helena sample that were analyzed for Mo isotopes.

5. Discussion

5.1. Interpretation and significance of uranium secular disequilibrium

The 234U deficiency seen in many of the samples studied here point to some degree of U loss presumably during chemical weathering while the few samples with a 234U excess presumably gained U through interaction with either seawater (directly or perhaps via sea spray) or surface runoff. Many of the samples studied here are older than 1 Ma, and if alteration and disturbance of 234U/238U occurs as a transient event before 1 Ma, the system will revert to secular equilibrium and the alteration event will be masked. However, the presence of 234U/238U disequilibrium in the samples studied is not confined to only <1 Ma samples. Three Miocene samples from St. Helena and one from Samoa show disequilibrium. This is not surprising as chemical weathering tends to operate as a slow but continuous process. Furthermore, in these relatively simple volcanic island settings, a scenario of early chemical weathering followed by stasis (allowing 234U/238U to revert to equilibrium) seems less likely than early burial by subsequent lava flows followed by more recent erosion and exposure to chemical weathering, yielding still measurable 234U/238U disequilibrium.

Indicators of chemical alteration come from numerous indices based on major element compositions. The most notable one is the chemical index of alteration (CIA), defined as $\text{Al}_2\text{O}_3/(\text{Al}_2\text{O}_3 + \text{CaO}^* + \text{Na}_2\text{O} + \text{K}_2\text{O})$ with oxides given in molar portions and CaO* corrected for any calcium-bearing carbonate or phosphate and higher values being consistent with greater weathering or alteration (Nesbitt and Young, 1982, 1984). Fig. 3a shows δ^{234}U versus CIA values, and these parameters are not well-correlated, although the samples at secular equilibrium do have the lowest CIA values. However, a weakness of the CIA is that different unweathered lithologies have different starting values, with basalts significantly lower (e.g., ~40) than granites (~low to mid-
Ohta and Arai (2007) used principal component analysis of a large database of different fresh igneous lithologies and sediments to develop an alternate weathering index meant to deconvolve the source rock composition of weathering effects. This system provides fractions of F, M, and W (for felsic, mafic, and weathered) for given major element compositions. In Fig. 3b, δ²⁳⁴U is compared to W; as with the CIA, samples at secular equilibrium tend to have the lowest W values, although the parameters are otherwise not well correlated.

Trace element ratios may also provide additional evidence of weathering or alteration effects. Thorium and uranium have very similar behavior in igneous systems, but Th remains insoluble and immobile during weathering while U may be oxidized from +4 to its soluble +6 state. The Th/U should therefore increase during chemical weathering and might be expected to correlate with δ²³⁴U. While the lavas of Pitcairn are notable in having unusually high primary Th/U ratios that appear to be unique to that plume source (Eisele et al., 2002), internal correlations between Th/U and δ²³⁴U for this and the other localities might still be expected. These parameters are shown in Fig. 4a and no clear correlation is present, although the St. Helena samples in ²³⁴U/²³⁸U dis-equilibrium tend to have higher Th/U. Other elements prone to open-system behavior during chemical weathering include alkalis such as Rb; leaching should remove (or submarine alteration should add) Rb relative to insoluble elements such as Th. However, fig. 4b shows a lack correlation between Th/Rb.

Conversely, a stronger relationship is present between Ce/Mo and δ²³⁴U (Fig. 4c), with dis-equilibrium samples generally exhibiting increasingly elevated Ce/Mo values. The Ce/Mo ratio is frequently used in studies of the Mo isotope tracer in igneous systems (e.g., Freymuth et al., 2015) because Mo is thought to show similar compatibility to Ce during mantle melting (Ce/Mo = 32 in MORB; Newsom and Palme, 1984; Newsom et al., 1986). Variations in Ce/Mo in arc basalts have been attributed to fractionation of these two elements during slab devolatilization, with Mo more easily transferred to the mantle wedge by fluids, leaving slab residues entering potential OIB source regions with a higher Ce/Mo (e.g., Freymuth et al., 2015; Skora et al., 2017). This may explain the high Ce/Mo values seen in some Samoa samples with ²³⁴U/²³⁸U at equilibrium. However, Mo is quite soluble during weathering under oxidizing conditions, especially compared to rare earth elements (e.g., Kendall et al., 2017). Furthermore, studies of Mo mineral residency in basalts have shown that it tends to be concentrated in easily weatherable glass (Greaney et al., 2017). King and Pett-Ridge (2018) found that the loss of Mo during chemical weathering of basalt was particularly high during its incipient stage. Consequently, the strong negative relationship between Ce/Mo and δ²³⁴U and the more muted relationships between δ²³⁴U and other tracers suggests that Mo is lost more quickly and readily.

It is important to consider whether incipient weathering is accompanied by ²³⁴U/²³⁸U and δ⁹⁸Mo/δ⁹⁶Mo fractionation. Studies of ²³⁹U/²³⁸U as a possible petrogenetic tracer have typically used ²³⁴U disequilibrium in samples as a criterion for rejection of the associated ²³⁹U/²³⁸U under the assumption that the latter is compromised during U-loss or U-gain from a sample. While we are not aware of any systematic study of δ²³⁴U behavior in weathering profiles, the similarity between the δ²³⁴U in river water to the average continental crust suggests that chemical weathering does not significantly fractionate ²³⁴U from ²³⁸U (Andersen et al., 2016). Fig. 5a shows δ²³⁴U versus δ⁹⁸Mo, and no apparent relationship between these parameters is present. Many of the samples with ²³⁴U/²³⁸U disequilibrium have δ²³⁴U that overlap with the average composition of MORB (Andersen et al., 2015), and the sample with the most negative δ²³⁸U is in ²³⁴U/²³⁸U equilibrium. Conversely, nearly all samples with either ²³⁴U excess or deficiency have isotopically light Mo, and the Samoa and Pitcairn samples with the greatest ²³⁴U deficit also have the lightest Mo isotope signature. Given the already discussed Ce/Mo and Ce/Mo/δ⁹⁸Mo relationship, this strongly suggests that Mo was leached during chemical weathering and that the heavy isotopes of Mo were preferentially lost during this chemical weathering. Preferential loss of isotopically heavy Mo during weathering was first suggested when it was recognized that rivers tend to contain dissolved Mo loads with isotopic compositions generally heavier than the bulk crust (Archer and Vance, 2008; Pearce et al., 2010; Voegelin et al., 2012; King and Pett-Ridge, 2018; Horan et al., 2020). Leaching experiments likewise found that leachates tend to have isotopically heavier Mo than residue (Liermann et al., 2011; Voegelin et al., 2012), and studies of weathering profiles of basalt have noted that lower saprolitic portions of the profiles tend to have isotopically light Mo relative to unweathered source rock (Greaney et al., 2021; Liu et al., 2020; Wang et al., 2020).

To summarize, evidence presented here suggests that samples with ²³⁴U/²³⁸U disequilibrium may also have disturbed Mo isotope compositions. These samples should not be considered further in terms of interpretations of the Mo isotope compositions of the plume sources. It is less clear if the δ²³⁴U values here have been affected, but the most conservative approach is to discount these results in the subsequent discussion. Finally, these results highlight the unique utility of the ²³⁴U/²³⁸U ratio in detecting cryptic or incipient alteration that might not be detected by other chemical tracers or indices.

5.2. General implications for mantle sources

Here, we consider the implications for OIB sources derived from the Mo and U compositions of the samples with ²³⁴U/²³⁸U equilibrium (2019) and hypothetical U isotope values are shown. End member compositions are given in supplementary table.
compositions (i.e., samples with $\delta^{234}\text{U} = 0 \pm 7$‰) (Fig. 6). The St. Helena samples are skewed towards lighter-than-MORB Mo isotope compositions, and U isotope compositions are within uncertainty of or slightly lighter than MORB. Samples from Samoa are divided between those with similarly light Mo isotope compositions but MORB-like U isotope compositions and those with anomalously light U isotope composition and MORB-like Mo isotope compositions. As discussed above, light Mo isotope compositions are most associated with sediments deposited under oxic conditions, especially those rich in Fe—Mn oxides/hydroxides. Addition of such material to plume sources would therefore seem to provide the most straightforward explanation for the isotopically light compositions seen in the localities. Such materials also would be expected to have U isotope compositions lighter than MORB (albeit with a smaller isotopic shift due to the smaller range of isotope fractionation observed in nature for U). However, sedimentary addition places time constraints on the age of subducted material incorporated into the plume source regions, as it requires those subducted sediments to have been deposited under a fully oxidized ocean, and such conditions did not become the norm until at least the Neoproterozoic. Sediments deposited in the earlier Proterozoic and especially the Archean are likely to contain Mo and U with isotope compositions broadly similar to the continental crust (i.e., heavier than MORB for Mo; Kendall et al., 2017 and references therein).

An additional complication with the scenario outlined above is that there is a potential for the isotope fractionation of Mo in the subducting slab package (i.e., ocean lithosphere plus sediment cover) during slab subduction.

Fig. 7. Mo and U isotope signatures vs published Sr, Nd, and Pb isotope data for the same samples. Samples with $^{234}\text{U} - ^{238}\text{U}$ disequilibrium are not shown; one sample St. Helena and one from Pitcairn with Mo isotope data but no U isotope data are shown as open symbols in (a) through (c) since the $^{234}\text{U} - ^{238}\text{U}$ disequilibrium filter cannot be applied. No Nd isotope results are available for these St. Helena samples and Sr results are only available for some; however, the Sr and Nd isotope range observed at St. Helena is exceedingly narrow so mean values from Hanyu et al. (2014) were assigned to these samples. Schematic arrows indicate the trajectories expected for the incorporation of either subducted terrigenous sediment or ocean crust into a MORB-like mantle source. Most of the variation in the results can be attributed to mixing of these three components. Note that for $^{206}\text{Pb}/^{204}\text{Pb}$ isotope compositions of subducted sediment will vary greatly based on age and the extent to which U and Pb are decoupled by subduction metamorphism, meaning that their contribution to a MORB-like mantle could either increase or decrease the resulting ratio so no trajectory for this scenario is given in (e) and (f).
dehydration so that material incorporated into the plume source regions would not necessarily preserve the same isotope signatures it acquired at the surface. As previously mentioned, several studies of Mo isotopes in arc systems have concluded that Mo must be isotopically fractionated during dewatering of ocean crust, leaving behind residual material with an isotopically light signature that pollutes the OIB source regions (Casalini et al., 2019; Freymuth et al., 2015; König et al., 2016; Skora et al., 2017; Willbold and Elliott, 2017). The relationship between δ^{256}Mo and Mo/ Ce in the OIBs reported on by Li et al. (2017) also supports this. Further support for isotope fractionation during dewatering was recently provided by Chen et al. (2019), who reported low δ^{258}Mo values in eclogites and blueschists (i.e., rocks which experienced subduction metamorphism and devolatilization).

Fractionation during dewatering has also been invoked for the U isotope system by Andersen et al. (2015) and Freymuth et al. (2019); in this case, fluids preferentially remove the light isotope of U, leading to lower δ^{238}U values in arcs, and the residual crustal material subducted into the deep mantle and OIB source regions may be left with higher δ^{238}U. (This hypothesis has not yet been ground-truthed in high pressure metamorphic rocks as has been done for Mo by Chen et al., 2019). While sampling to date has found significant U isotope heterogeneity in altered ocean crust with δ^{238}U values both higher and lower than unaltered MORB (Andersen et al., 2015; Noordmann et al., 2015), altered ocean crust appears to have a heavier isotope composition than MORB on average (Andersen et al., 2015), and the limited loss of isotopically light U during devolatilization will only lead to a further increase in δ^{238}U in the residual ocean crustal material that may be added to the plume source regions. This suggests that OIBs that sample recycled crust should have higher δ^{238}U than MORB, which is the opposite of what is observed. Andersen et al. (2015) explained this by invoking additional episodes of slab devolatilization beyond the arc front that might release heavy U into the convecting upper mantle.

Incorporation of devolatilized subducted ocean crust likely explains the fractionated Mo and U isotope compositions observed here, as the apparent antiquity of the OIB sources (Chauvel et al., 1992; Jackson et al., 2007a, 2007b; Kimura et al., 2016; Andersen et al., 2015; Cabral et al., 2013; Delavault et al., 2015, 2016) would seem to argue against subducted sediments being a principal source, particularly in the case of St. Helena, where published Sr and Nd isotope compositions are either comparable to or only slightly geochemically enriched relative to MORB. Two models of the addition of subducted oceanic crust using the eclogite Mo data from Chen et al. (2019), to an ambient mantle with a MORB-like isotope composition are shown in Fig. 6 (see supplemental table for end members). Both end members (OCI and OC2) use eclogite sample (SEC-46-1) as an endmember for MO isotope composition of subducted ocean crust, as this occurs roughly in the middle of the range of MO isotope compositions reported by Chen et al. (2019). However, the greater uncertainty in the behavior of the U isotope system in the slab, as outlined above, makes the choice of an end member δ^{238}U composition rather arbitrary. OCI uses a δ^{238}U slightly higher than MORB to explain one of the two groups of Samoan data whereas OC2 is assigned a δ^{238}U similar to that of MORB, as δ^{238}U is thought to be a good tracer of the ocean crust. For the end member chosen here for oceanic crust, the most extreme St. Helena sample would consist entirely of recycled ocean crust (i.e., without any significant amount of crustal crust and possible range of end member compositions, this is less concerning; for example, use of a different sample from Chen et al. (2019) with a lighter Mo isotope composition would reduce the required fraction of recycled ocean crust and future work on Mo isotopes in high pressure-low temperature metamorphic rocks will undoubtedly expand range of Mo isotope compositions observed in such settings. In any case, ancient ocean crust has been considered a key component in both the Pitcairn and St. Helena sources based on other isotope tracers and trace elements (e.g., Kawabata et al., 2011; Hanyu et al., 2014; Garapic et al., 2015; Blusztajn et al., 2018; Delavault et al., 2015). Validity of the δ^{238}U values chosen for end members can only be assessed through further research on the U isotope, especially in previously subducted high pressure-low temperature metamorphic rocks.

The Mo—U isotope results for Samoa are distinct in that they form two groups, one comparable to St. Helena (low δ^{258}Mo, MORB-like δ^{238}U) and another with MORB-like δ^{258}Mo and unusually low δ^{238}U, and these differences are partially linked to geographic location. Jackson et al. (2014) reported that samples from different island and seamount groups along the Samoan chain have distinct radiogenic isotope trends. Samples of the Vai lineament have dilute HIMU signatures, while samples from the Malu lineament have classic EM-2 signatures, and rejuvenated samples have EM-1-like signatures. Of the three lowest δ^{258}Mo Samoan samples studied here, two are from the rejuvenated trend and one is from the Vai trend. Of the two low δ^{238}U samples, one is from the Vai trend and the other is from the Malu trend. A low δ^{238}U signature that is seemingly decoupled from δ^{258}Mo, as seen for one of the Samoan samples, may be related to a key difference in the oceanographic behavior of these two isotope tracers. In contrast to Mo, non-quantitative reduction of dissolved U in euxinic depositional environments causes substantial enrichment in the heavy isotope of U in associated sediments, which in turn shifts the composition of all remaining oceanic sinks of U towards a lighter isotope composition (e.g., Andersen et al., 2017). This effect is at work today (in that deposition of heavy U in the Black Sea drives the remaining oceanic U budget to a lighter isotope composition), but during periods of much greater anoxia or low oxygen conditions, the negative shift in δ^{238}U would be greater in the other sinks (e.g., Montoya-Pino et al., 2011; Andersen et al., 2017). Such conditions appear to have been prevalent between the Paleo-Proterozoic Great Oxidation Event and the Neoproterozoic Oxidation Event; on the one hand, dissolved oxygen levels were higher than the Archean but euxinic conditions remained more widespread than what would be typical of the Phanerozoic (e.g., Planavsky et al., 2014). In particular, Gilleadeau et al. (2019) recently reported isotopically light U in carbonates (representing the ocean water composition of the time) ranging from 1.8 and 0.8 Ga in age whereas the oceanic Mo isotope record recorded by black shales during this interval show more muted deviations from crustal values (e.g., Kendall et al., 2011; Assaf et al., 2013; Partin et al., 2015). This latter point is important because it argues against a significant pool of sediment with isotopically light Mo being produced and subsequently subducted during the Proterozoic. With this in mind, a distinct Proterozoic pool of subducted material (ocean crust plus sediment) may explain the anomalous U isotope results for Vai and Malu Samoan samples. This is modeled as OC3 in Fig. 6, which has a MORB-like Mo isotope composition but anomalously light U isotope composition. Again, the validity of the model U isotope compositions used here will depend on future work on this isotope system.

Further considerations for the origin of the fractionated Mo and U signatures are provided by comparing those isotope ratios to published Sr, Nd, and Pb isotope data for the same samples (Fig. 7). (Note that one sample from St. Helena and one from Pitcairn have lighter-than-MORB Mo isotopic compositions but no U isotopic data with which to evaluate alteration effects; these are shown as unfilled symbols in Fig. 7a through 7c for the sake of completeness). Correlations between Mo and U isotopes and the radiogenic isotopes are not strong but much of the covariation can be explained by the mixing a MORB-like reservoir with various amounts of recycled ocean crust and possible range of end member compositions, this is less concerning; for example, use of a different sample from Chen et al. (2019) with a lighter Mo isotope composition would reduce the required fraction of recycled ocean crust and future work on Mo isotopes in high pressure-low temperature metamorphic rocks will undoubtedly expand range of Mo isotope compositions observed in such settings. In any case, ancient ocean crust has been considered a key component in both the Pitcairn and St. Helena sources based on other isotope tracers and trace elements.
younger sediments may develop lighter Mo and U isotope signatures by scavenging the element from seawater (and the effect of euxinia in the earlier Proterozoic as discussed above may also lead to a lighter U isotope signature). While we consider recycled ocean crust to be the major source of fractionated Mo and U isotope signatures, the elevated δ²³⁸⁹⁰Sr and lower εNd compositions seen in some of the Samoan samples (and Pitcairn) are surely a signpost of subducted sediment.

6. Conclusions

Characterization of the Mo and U isotope compositions of the EM-1, EM-2, and HIMU mantle end members was attempted via analysis of selected OIB samples from Pitcairn, Samoa, and St. Helena. Large-scale variations in both Mo and U were observed with significant overlap across the three localities. Some of this variation is attributable to recent chemical weathering or alteration of the samples, which is revealed by ²³⁸⁹⁰U/²³⁵⁹⁰U disequilibrium in roughly half of the samples, including all of those from Pitcairn that were analyzed for U isotopes. Of these samples, most show a ³⁴⁹⁰U deficit consistent with U loss and samples with greater disequilibrium tend to have more extreme ⁸⁹⁰Mo compositions and higher Ce/Mo, implying that the Mo isotope system was similarly disturbed by alteration. The lack of strong correlation with traditional major and trace element indicators of alteration highlights the unique power of the molybdenum and uranium isotope system as a tracer of slab input in subduction zones: an example from Martinique, Lesser Antilles arc. Earth Planet. Sci. Lett. 522, 244–254.

Samples with ²³⁴⁹⁰U/²³⁸⁹⁰U in secular equilibrium have δ⁹⁰Mo values ranging from comparable to MORB to significantly lower, and the same is true of δ²³⁸⁹⁰U. We attribute the low δ⁹⁰Mo values and more muted fractionation of U in the St. Helena and some of the Samoa samples to incorporation of ancient devolatilized subducted oceanic crust, which is in line with radiogenic isotope studies. Greater variation is seen in the samples from Samoa, some of which have unusually low δ²³⁸⁹⁰U values but MORB like δ⁹⁰Mo values. We speculate that the low δ²³⁸⁹⁰U signature reflects the influence of a distinct pool of subducted oceanic crust dating to the period between the Great Oxidation Event (2.3 Ga) and Neoproterozoic Oxidation Event (0.6 Ga).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

CTR and NJP acknowledge funding from the NASA Astrobiology Institute. This paper was improved by thoughtful reviews from Tim Elliot, Vincent Salters, and an anonymous reviewer.

Appendix A. Supplementary Data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.chemgeo.2021.120416.

References

Hanyu, T., Kawabata, H., Tatsumi, Y., Kimura, J.-I., Hyodo, H., Sato, K., Miyazaki, T.,
Knaack, C., Cornelius, S., Hooper, P.R., 1994. Trace Element Analysis of Rocks and
Kendall, B., Dahl, T.W., Anbar, A.D., 2017. The stable isotope geochemistry of
Kendall, B., Gordon, G.W., Poulton, S.W., Anbar, A.D., 2011. Molybdenum isotope